ebook img

Asymptotic Analysis in General Relativity PDF

381 Pages·2018·2.997 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Asymptotic Analysis in General Relativity

LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES ManagingEditor: ProfessorM.Reid,MathematicsInstitute, UniversityofWarwick,CoventryCV47AL,UnitedKingdom Thetitlesbelowareavailablefrombooksellers,orfromCambridgeUniversityPressat www.cambridge.org/mathematics 325 LecturesontheRicciflow,P.TOPPING 326 ModularrepresentationsoffinitegroupsofLietype,J.E.HUMPHREYS 327 Surveysincombinatorics2005,B.S.WEBB(ed) 328 Fundamentalsofhyperbolicmanifolds,R.CANARY,D.EPSTEIN&A.MARDEN(eds) 329 SpacesofKleiniangroups,Y.MINSKY,M.SAKUMA&C.SERIES(eds) 330 Noncommutativelocalizationinalgebraandtopology,A.RANICKI(ed) 331 Foundationsofcomputationalmathematics,Santander2005,L.MPARDO,A.PINKUS,E.SU¨LI &M.J.TODD(eds) 332 Handbookoftiltingtheory,L.ANGELERIHU¨GEL,D.HAPPEL&H.KRAUSE(eds) 333 Syntheticdifferentialgeometry(2ndEdition),A.KOCK 334 TheNavier–Stokesequations,N.RILEY&P.DRAZIN 335 Lecturesonthecombinatoricsoffreeprobability,A.NICA&R.SPEICHER 336 Integralclosureofideals,rings,andmodules,I.SWANSON&C.HUNEKE 337 MethodsinBanachspacetheory,J.M.F.CASTILLO&W.B.JOHNSON(eds) 338 Surveysingeometryandnumbertheory,N.YOUNG(ed) 339 GroupsStAndrews2005I,C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 340 GroupsStAndrews2005II,C.M.CAMPBELL,M.R.QUICK,E.F.ROBERTSON&G.C.SMITH(eds) 341 Ranksofellipticcurvesandrandommatrixtheory,J.B.CONREY,D.W.FARMER,F.MEZZADRI &N.C.SNAITH(eds) 342 Ellipticcohomology,H.R.MILLER&D.C.RAVENEL(eds) 343 AlgebraiccyclesandmotivesI,J.NAGEL&C.PETERS(eds) 344 AlgebraiccyclesandmotivesII,J.NAGEL&C.PETERS(eds) 345 Algebraicandanalyticgeometry,A.NEEMAN 346 Surveysincombinatorics2007,A.HILTON&J.TALBOT(eds) 347 Surveysincontemporarymathematics,N.YOUNG&Y.CHOI(eds) 348 Transcendentaldynamicsandcomplexanalysis,P.J.RIPPON&G.M.STALLARD(eds) 349 ModeltheorywithapplicationstoalgebraandanalysisI,Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY &A.WILKIE(eds) 350 ModeltheorywithapplicationstoalgebraandanalysisII,Z.CHATZIDAKIS,D.MACPHERSON,A.PILLAY &A.WILKIE(eds) 351 FinitevonNeumannalgebrasandmasas,A.M.SINCLAIR&R.R.SMITH 352 Numbertheoryandpolynomials,J.MCKEE&C.SMYTH(eds) 353 Trendsinstochasticanalysis,J.BLATH,P.MO¨RTERS&M.SCHEUTZOW(eds) 354 Groupsandanalysis,K.TENT(ed) 355 Non-equilibriumstatisticalmechanicsandturbulence,J.CARDY,G.FALKOVICH&K.GAWEDZKI 356 EllipticcurvesandbigGaloisrepresentations,D.DELBOURGO 357 Algebraictheoryofdifferentialequations,M.A.H.MACCALLUM&A.V.MIKHAILOV(eds) 358 Geometricandcohomologicalmethodsingrouptheory,M.R.BRIDSON,P.H.KROPHOLLER &I.J.LEARY(eds) 359 Modulispacesandvectorbundles,L.BRAMBILA-PAZ,S.B.BRADLOW,O.GARC´IA-PRADA& S.RAMANAN(eds) 360 Zariskigeometries,B.ZILBER 361 Words:Notesonverbalwidthingroups,D.SEGAL 362 Differentialtensoralgebrasandtheirmodulecategories,R.BAUTISTA,L.SALMERO´N&R.ZUAZUA 363 Foundationsofcomputationalmathematics,HongKong2008,F.CUCKER,A.PINKUS&M.J.TODD(eds) 364 Partialdifferentialequationsandfluidmechanics,J.C.ROBINSON&J.L.RODRIGO(eds) 365 Surveysincombinatorics2009,S.HUCZYNSKA,J.D.MITCHELL&C.M.RONEY-DOUGAL(eds) 366 Highlyoscillatoryproblems,B.ENGQUIST,A.FOKAS,E.HAIRER&A.ISERLES(eds) 367 Randommatrices:Highdimensionalphenomena,G.BLOWER 368 GeometryofRiemannsurfaces,F.P.GARDINER,G.GONZA´LEZ-DIEZ&C.KOUROUNIOTIS(eds) 369 Epidemicsandrumoursincomplexnetworks,M.DRAIEF&L.MASSOULIE´ 370 Theoryofp-adicdistributions,S.ALBEVERIO,A.YU.KHRENNIKOV&V.M.SHELKOVICH 371 Conformalfractals,F.PRZYTYCKI&M.URBAN´SKI 372 Moonshine:Thefirstquartercenturyandbeyond,J.LEPOWSKY,J.MCKAY&M.P.TUITE(eds) 373 Smoothness,regularityandcompleteintersection,J.MAJADAS&A.G.RODICIO 374 Geometricanalysisofhyperbolicdifferentialequations:Anintroduction,S.ALINHAC 375 Triangulatedcategories,T.HOLM,P.JØRGENSEN&R.ROUQUIER(eds) 376 Permutationpatterns,S.LINTON,N.RUSˇKUC&V.VATTER(eds) 377 AnintroductiontoGaloiscohomologyanditsapplications,G.BERHUY 378 Probabilityandmathematicalgenetics,N.H.BINGHAM&C.M.GOLDIE(eds) 379 Finiteandalgorithmicmodeltheory,J.ESPARZA,C.MICHAUX&C.STEINHORN(eds) 380 Realandcomplexsingularities,M.MANOEL,M.C.ROMEROFUSTER&C.T.CWALL(eds) 381 Symmetriesandintegrabilityofdifferenceequations,D.LEVI,P.OLVER,Z.THOMOVA &P.WINTERNITZ(eds) Downloaded from https://www.cambridge.org/core. University of New England, on 04 Jan 2018 at 16:45:21, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612 382 Forcingwithrandomvariablesandproofcomplexity,J.KRAJ´ICˇEK 383 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryI,R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 384 Motivicintegrationanditsinteractionswithmodeltheoryandnon-ArchimedeangeometryII,R.CLUCKERS, J.NICAISE&J.SEBAG(eds) 385 EntropyofhiddenMarkovprocessesandconnectionstodynamicalsystems,B.MARCUS,K.PETERSEN &T.WEISSMAN(eds) 386 Independence-friendlylogic,A.L.MANN,G.SANDU&M.SEVENSTER 387 GroupsStAndrews2009inBathI,C.M.CAMPBELLetal.(eds) 388 GroupsStAndrews2009inBathII,C.M.CAMPBELLetal.(eds) 389 Randomfieldsonthesphere,D.MARINUCCI&G.PECCATI 390 Localizationinperiodicpotentials,D.E.PELINOVSKY 391 Fusionsystemsinalgebraandtopology,M.ASCHBACHER,R.KESSAR&B.OLIVER 392 Surveysincombinatorics2011,R.CHAPMAN(ed) 393 Non-abelianfundamentalgroupsandIwasawatheory,J.COATESetal.(eds) 394 Variationalproblemsindifferentialgeometry,R.BIELAWSKI,K.HOUSTON&M.SPEIGHT(eds) 395 Howgroupsgrow,A.MANN 396 Arithmeticdifferentialoperatorsoverthep-adicintegers,C.C.RALPH&S.R.SIMANCA 397 Hyperbolicgeometryandapplicationsinquantumchaosandcosmology,J.BOLTE&F.STEINER(eds) 398 Mathematicalmodelsincontactmechanics,M.SOFONEA&A.MATEI 399 Circuitdoublecoverofgraphs,C.-Q.ZHANG 400 Densespherepackings:ablueprintforformalproofs,T.HALES 401 AdoubleHallalgebraapproachtoaffinequantumSchur–Weyltheory,B.DENG,J.DU&Q.FU 402 Mathematicalaspectsoffluidmechanics,J.C.ROBINSON,J.L.RODRIGO&W.SADOWSKI(eds) 403 Foundationsofcomputationalmathematics,Budapest2011,F.CUCKER,T.KRICK,A.PINKUS &A.SZANTO(eds) 404 Operatormethodsforboundaryvalueproblems,S.HASSI,H.S.V.DESNOO&F.H.SZAFRANIEC(eds) 405 Torsors,e´talehomotopyandapplicationstorationalpoints,A.N.SKOROBOGATOV(ed) 406 Appalachiansettheory,J.CUMMINGS&E.SCHIMMERLING(eds) 407 Themaximalsubgroupsofthelow-dimensionalfiniteclassicalgroups,J.N.BRAY,D.F.HOLT &C.M.RONEY-DOUGAL 408 Complexityscience:theWarwickmaster’scourse,R.BALL,V.KOLOKOLTSOV&R.S.MACKAY(eds) 409 Surveysincombinatorics2013,S.R.BLACKBURN,S.GERKE&M.WILDON(eds) 410 Representationtheoryandharmonicanalysisofwreathproductsoffinitegroups, T.CECCHERINI-SILBERSTEIN,F.SCARABOTTI&F.TOLLI 411 Modulispaces,L.BRAMBILA-PAZ,O.GARC´IA-PRADA,P.NEWSTEAD&R.P.THOMAS(eds) 412 Automorphismsandequivalencerelationsintopologicaldynamics,D.B.ELLIS&R.ELLIS 413 Optimaltransportation,Y.OLLIVIER,H.PAJOT&C.VILLANI(eds) 414 AutomorphicformsandGaloisrepresentationsI,F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 415 AutomorphicformsandGaloisrepresentationsII,F.DIAMOND,P.L.KASSAEI&M.KIM(eds) 416 Reversibilityindynamicsandgrouptheory,A.G.O’FARRELL&I.SHORT 417 Recentadvancesinalgebraicgeometry,C.D.HACON,M.MUSTAT¸Aˇ&M.POPA(eds) 418 TheBloch–KatoconjecturefortheRiemannzetafunction,J.COATES,A.RAGHURAM,A.SAIKIA &R.SUJATHA(eds) 419 TheCauchyproblemfornon-Lipschitzsemi-linearparabolicpartialdifferentialequations,J.C.MEYER &D.J.NEEDHAM 420 Arithmeticandgeometry,L.DIEULEFAITetal.(eds) 421 O-minimalityandDiophantinegeometry,G.O.JONES&A.J.WILKIE(eds) 422 GroupsStAndrews2013,C.M.CAMPBELLetal.(eds) 423 Inequalitiesforgrapheigenvalues,Z.STANIC´ 424 Surveysincombinatorics2015,A.CZUMAJetal.(eds) 425 Geometry,topologyanddynamicsinnegativecurvature,C.S.ARAVINDA,F.T.FARRELL&J.-F.LAFONT(eds) 426 Lecturesonthetheoryofwaterwaves,T.BRIDGES,M.GROVES&D.NICHOLLS(eds) 427 RecentadvancesinHodgetheory,M.KERR&G.PEARLSTEIN(eds) 428 GeometryinaFre´chetcontext,C.T.J.DODSON,G.GALANIS&E.VASSILIOU 429 Sheavesandfunctionsmodulop,L.TAELMAN 430 RecentprogressinthetheoryoftheEulerandNavier–Stokesequations,J.C.ROBINSON,J.L.RODRIGO, W.SADOWSKI&A.VIDAL-LO´PEZ(eds) 431 Harmonicandsubharmonicfunctiontheoryontherealhyperbolicball,M.STOLL 432 Topicsingraphautomorphismsandreconstruction(2ndEdition),J.LAURI&R.SCAPELLATO 433 RegularandirregularholonomicD-modules,M.KASHIWARA&P.SCHAPIRA 434 Analyticsemigroupsandsemilinearinitialboundaryvalueproblems(2ndEdition),K.TAIRA 435 GradedringsandgradedGrothendieckgroups,R.HAZRAT 436 Groups,graphsandrandomwalks,T.CECCHERINI-SILBERSTEIN,M.SALVATORI&E.SAVA-HUSS(eds) 437 Dynamicsandanalyticnumbertheory,D.BADZIAHIN,A.GORODNIK&N.PEYERIMHOFF(eds) 438 Randomwalksandheatkernelsongraphs,M.T.BARLOW 439 Evolutionequations,K.AMMARI&S.GERBI(eds) 440 Surveysincombinatorics2017,A.CLAESSONetal.(eds) 441 Polynomialsandthemod2SteenrodalgebraI,G.WALKER&R.M.W.WOOD 442 Polynomialsandthemod2SteenrodalgebraII,G.WALKER&R.M.W.WOOD 443 Asymptoticanalysisingeneralrelativity,T.DAUDE´,D.HA¨FNER&J.-P.NICOLAS(eds) 444 Geometricandcohomologicalgrouptheory,P.H.KROPHOLLER,I.J.LEARY,C.MART´INEZ-PE´REZ& B.E.A.NUCINKIS(eds) Downloaded from https://www.cambridge.org/core. University of New England, on 04 Jan 2018 at 16:45:21, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612 LondonMathematicalSocietyLectureNoteSeries:443 Asymptotic Analysis in General Relativity Editedby THIERRY DAUDE´ Universite´ deCergy-Pontoise,France DIETRICH HA¨ FNER Universite´ GrenobleAlpes,France JEAN-PHILIPPE NICOLAS Universite´ deBretagneOccidentale,France Downloaded from https://www.cambridge.org/core. University of New England, on 04 Jan 2018 at 16:45:21, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781316649404 DOI:10.1017/9781108186612 ©CambridgeUniversityPress2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloguinginPublicationdata Names:Daude´,Thierry,1977–editor.|Ha¨fner,Dietrich,editor.| Nicolas,J.-P.(Jean-Philippe),editor. Title:Asymptoticanalysisingeneralrelativity/editedbyThierryDaude´ (Universite´deCergy-Pontoise),DietrichHa¨fner(Universite´GrenobleAlpes), Jean-PhilippeNicolas(Universite´deBretagneOccidentale). Othertitles:LondonMathematicalSocietylecturenoteseries;443. Description:Cambridge,UnitedKingdom;NewYork,NY: CambridgeUniversityPress,2017.| Series:LondonMathematicalSocietylecturenoteseries;443| Includesbibliographicalreferences. Identifiers:LCCN2017023160|ISBN9781316649404(pbk.)|ISBN1316649407(pbk.) Subjects:LCSH:Generalrelativity(Physics)–Mathematics. Classification:LCCQC173.6.A832017|DDC530.11–dc23LCrecordavailableat https://lccn.loc.gov/2017023160 ISBN978-1-316-64940-4Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Downloaded from https://www.cambridge.org/core. University of New England, on 04 Jan 2018 at 16:45:21, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612 Contents 1 IntroductiontoModernMethodsforClassicaland QuantumFieldsinGeneralRelativity page1 ThierryDaude´,DietrichHa¨fnerandJean-PhilippeNicolas 1.1 GeometryofBlackHoleSpacetimes 2 1.2 QuantumFieldTheoryonCurvedSpacetimes 3 1.3 ConformalGeometryandConformalTractorCalculus 4 1.4 AMinicourseinMicrolocalAnalysisandWavePropagation 5 References 6 2 GeometryofBlackHoleSpacetimes 9 LarsAndersson,ThomasBa¨ckdahlandPieterBlue 2.1 Introduction 9 2.2 Background 13 2.3 BlackHoles 28 2.4 SpinGeometry 43 2.5 TheKerrSpacetime 53 2.6 MonotonicityandDispersion 55 2.7 SymmetryOperators 65 2.8 ConservationLawsfortheTeukolskySystem 70 2.9 AMorawetzEstimatefortheMaxwellFieldonSchwarzschild 75 References 79 3 AnIntroductiontoConformalGeometryandTractor Calculus,withaviewtoApplicationsinGeneralRelativity 86 SeanN.CurryandA.RodGover 3.1 Introduction 86 3.2 Lecture1:RiemannianInvariantsandInvariantOperators 91 v Downloaded from https://www.cambridge.org/core. University of New England, on 04 Jan 2018 at 16:45:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612 vi Contents 3.3 Lecture2:ConformalTransformationsandConformalCovariance 94 3.4 Lecture3:ProlongationandtheTractorConnection 104 3.5 Lecture 4: The Tractor Curvature, Conformal Invariants and InvariantOperators 120 3.6 Lecture5:ConformalCompactificationofPseudo-Riemannian Manifolds 128 3.7 Lecture6:ConformalHypersurfaces 145 3.8 Lecture7:GeometryofConformalInfinity 151 3.9 Lecture8:BoundaryCalculusandAsymptoticAnalysis 154 Appendix:ConformalKillingVectorFieldsandAdjointTractors 160 References 168 4 AnIntroductiontoQuantumFieldTheoryon CurvedSpacetimes 171 ChristianGe´rard 4.1 Introduction 171 4.2 AQuickIntroductiontoQuantumMechanics 175 4.3 Notation 178 4.4 CCRandCARAlgebras 179 4.5 StatesonCCR/CARAlgebras 183 4.6 LorentzianManifolds 190 4.7 Klein–GordonFieldsonLorentzianManifolds 192 4.8 FreeDiracFieldsonLorentzianManifolds 197 4.9 MicrolocalAnalysisofKlein–GordonQuasi-FreeStates 201 4.10 ConstructionofHadamardStates 209 References 217 5 AMinicourseonMicrolocalAnalysisforWavePropagation 219 Andra´sVasy 5.1 Introduction 219 5.2 TheOverview 221 5.3 TheBasicsofMicrolocalAnalysis 230 5.4 PropagationPhenomena 285 5.5 ConformallyCompactSpaces 315 5.6 MicrolocalAnalysisintheb-Setting 349 References 371 Downloaded from https://www.cambridge.org/core. University of New England, on 04 Jan 2018 at 16:45:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612 1 Introduction to Modern Methods for Classical and Quantum Fields in General Relativity ThierryDaude´,DietrichHa¨fnerandJean-PhilippeNicolas The last few decades have seen major developments in asymptotic analysis in the framework of general relativity, with the emergence of methods that, untilrecently,werenotappliedtocurvedLorentziangeometries.Thishasled notablytotheproofofthestabilityoftheKerr–deSitterspacetimebyP.Hintz andA.Vasy[17].Anessentialfeatureofmanyrecentworksinthefieldisthe useofdispersiveestimates;theyareatthecoreofmoststabilityresultsandare also crucial for the construction of quantum states in quantum field theory, domains that have a priori little in common. Such estimates are in general obtained through geometric energy estimates (also referred to as vector field methods)orviamicrolocal/spectralanalysis.Inourminds,thetwoapproaches should be regarded as complementary, and this is a message we hope this volume will convey succesfully. More generally than dispersive estimates, asymptotic analysis is concerned with establishing scattering-type results. Another fundamental example of such results is asymptotic completeness, which, in many cases, can be translated in terms of conformal geometry as the well-posedness of a characteristic Cauchy problem (Goursat problem) at nullinfinity.Thishasbeenusedtodevelopalternativeapproachestoscattering theory via conformal compactifications (see for instance F. G. Friedlander [11]andL.MasonandJ.-P.Nicolas[22]).Thepresenceofsymmetriesinthe geometricalbackgroundcanbeatremendoushelpinprovingscatteringresults, dispersiveestimatesinparticular.Whatwemeanbysymmetryisgenerallythe existence of an isometry associated with the flow of a Killing vector field, though there exists a more subtle type of symmetry, described sometimes as hidden,correspondingtothepresenceofKillingspinorsforinstance.Recently, thevectorfieldmethodhasbeenadaptedtotakesuchgeneralizedsymmetries intoaccountbyL.AnderssonandP.Bluein[2]. This volume compiles notes from the eight-hour mini-courses given at the summerschoolonasymptoticanalysisingeneralrelativity,heldattheInstitut 1 Downloaded from https://www.cambridge.org/core. University of Exeter, on 30 Dec 2017 at 23:36:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612.001 2 T.Daude´,D.Ha¨fnerandJ.-P.Nicolas FourierinGrenoble,France,from16Juneto4July2014.Thepurposeofthe summer school was to draw an up-to-date panorama of the new techniques thathaveinfluencedtheasymptoticanalysisofclassicalandquantumfieldsin generalrelativityinrecentyears.Itconsistedoffivemini-courses: (cid:129) “Geometry of black hole spacetimes” by Lars Andersson, Albert Einstein Institut,Golm,Germany; (cid:129) “Anintroductiontoquantumfieldtheoryoncurvedspacetimes”byChristian Ge´rard,Paris11University,Orsay,France; (cid:129) “Anintroductiontoconformalgeometryandtractorcalculus,withaviewto applicationsingeneralrelativity”byRodGover,AucklandUniversity,New Zealand; (cid:129) “TheboundedL2conjecture”byJe´re´mieSzeftel,Paris6University,France; (cid:129) “Aminicourseonmicrolocalanalysisforwavepropagation”byAndra´sVasy, StanfordUniversity,UnitedStatesofAmerica. Among these, only four are featured in this book. The proof of the bounded L2conjecturehavingalreadyappearedintwodifferentforms[20,21],Je´re´mie Szeftelpreferrednottoaddyetanotherversionofthisresult;hislecturenotes arethereforenotincludedinthepresentvolume. 1.1. GeometryofBlackHole Spacetimes The notion of a black hole dates back to the 18th century with the works of SimpsonandLaplace,butitfounditsmoderndescriptionwithintheframework of general relativity. In fact the year after the publication of the general theory of relativity by Einstein, Karl Schwarzschild [30] found an explicit non-trivial solution of the Einstein equations that was later understood to describe a universe containing nothing but an eternal spherical black hole. The Kerr solution appeared in 1963 [19] and, with the singularity theorems of Hawking and Penrose [15], black holes were eventually understood as inevitabledynamicalfeaturesoftheevolutionoftheuniverseratherthanmere mathematical oddities. The way exact black hole solutions of the Einstein equationswerediscoveredwasbyimposingsymmetries.FirstSchwarzschild looked for spherically symmetric and static solutions in four spacetime dimensions, which reduces the Einstein equations to a non-linear ordinary differentialequation(ODE).TheKerrsolutionappearswhenonerelaxesone of the symmetries and looks for stationary and axially symmetric solutions. RoyKerrobtainedhissolutionbyimposingonthemetrictheso-called“Kerr– Schild” ansatz that corresponds to assuming a special algebraic property for Downloaded from https://www.cambridge.org/core. University of Exeter, on 30 Dec 2017 at 23:36:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612.001 ModernMethodsforClassicalandQuantumFieldsinGeneralRelativity 3 the Weyl tensor, namely that it has Petrov-type D, which is similar to the conditionforapolynomialtohavetwodoubleroots.Thisalgebraicspeciality oftheWeyltensorcanbeunderstoodasanothertypeofsymmetryassumption about spacetime. This is a generalized symmetry that does not correspond to an isometry generated by the flow of a vector field, but is related to the existenceofaKillingspinor.TheKerrfamily,whichcontainsSchwarzschild’s spacetime as the zero angular momentum case, is expected to be the unique family of asymptotically flat and stationary (perhaps pseudo-stationary, or locally stationary, would be more appropriate) black hole solutions of the Einstein vacuum equations (there is a vast literature on this topic, see for exampletheoriginalpaperbyD.Robinson[27],hisreviewarticle[28]andthe recentanalyticapproachbyS.Alexakis,A.D.Ionescu,andS.Klainerman[1]). Moreoveritisbelievedtobestable(thereisalsoanimportantliteratureonthis question,thestabilityofKerr–deSitterblackholeswasestablishedrecentlyin [17], though the stability of the Kerr metric is still an open problem). These twoconjectures playacrucialroleinphysics whereitiscommonlyassumed thatthelongtermdynamicsofablackholestabilizestoaKerrsolution.The extendedlecturenotesbyLarsAndersson,ThomasBa¨ckdahl,andPieterBlue take us through the many topics that are relevant to the questions of stability and uniqueness of the Kerr metric, including the geometry of stationary and dynamical black holes with a particular emphasis on the special features of the Kerr metric, spin geometry, dispersive estimates for hyperbolic equations andgeneralizedsymmetryoperators.ThetypeDstructureisanessentialfocus of the course, with the intimate links between the principal null directions, the Killing spinor, Killing vectors and tensors, Killing–Yano tensors and symmetry operators. All these notions are used in the final sections where some conservation laws are derived for the Teukolsky system governing the evolution of spin n/2 zero rest-mass fields, and a new proof of a Morawetz estimateforMaxwellfieldsontheSchwarzschildmetricisgiven. 1.2. QuantumFieldTheoryonCurvedSpacetimes Inthe1980s,DimockandKaystartedaresearchprogramconcerningscatter- ing theory for classical and quantum fields on the Schwarzschild spacetime; see[9].TheirworkwasthenpushedfurtherbyBachelot, Ha¨fner,andothers, leadinginparticulartoamathematicallyrigorousdescriptionoftheHawking effect on Schwarzschild and Kerr spacetimes, see e.g. [4], [14]. In the Schwarzschild case there exists a global timelike Killing vector field in the exterioroftheblackholethatcanbeusedtodefinevacuumandthermalstates. Downloaded from https://www.cambridge.org/core. University of Exeter, on 30 Dec 2017 at 23:36:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108186612.001

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.