RESEARCHARTICLE Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling SalvadorArenas-Castro1*,JoãoGonc¸alves1,PauloAlves1,DomingoAlcaraz-Segura2,3,4, JoãoP.Honrado1,5 1 CentrodeInvestigac¸ãoemBiodiversidadeeRecursosGene´ticos(InBIO/CIBIO-ICETA),Universidadedo Porto,Vairão,Portugal,2 DepartamentodeBota´nica,FacultaddeCiencias,UniversidaddeGranada, Granada,Spain,3 AndalusianCenterfortheAssessmentandMonitoringofGlobalChange(CAESCG), a1111111111 UniversidaddeAlmer´ıa,Almer´ıa,Spain,4 iecolab.InteruniversitaryInstituteforEarthSystemResearch a1111111111 (IISTA),UniversidaddeGranada,Granada,Spain,5 FaculdadedeCiências,UniversidadedoPorto,Porto, a1111111111 Portugal a1111111111 a1111111111 *[email protected] Abstract OPENACCESS Globalenvironmentalchangesarerapidlyaffectingspecies’distributionsandhabitatsuitabil- Citation:Arenas-CastroS,Gonc¸alvesJ,AlvesP, ityworldwide,requiringacontinuousupdateofbiodiversitystatustosupporteffectivedeci- Alcaraz-SeguraD,HonradoJP(2018)Assessing sionsonconservationpolicyandmanagement.Inthisregard,satellite-derivedEcosystem themulti-scalepredictiveabilityofecosystem FunctionalAttributes(EFAs)offeramoreintegrativeandquickerevaluationofecosystem functionalattributesforspeciesdistribution responsestoenvironmentaldriversandchangesthanclimateandstructuralorcompositional modelling.PLoSONE13(6):e0199292.https://doi. org/10.1371/journal.pone.0199292 landscapeattributes.Thus,EFAsmayholdadvantagesaspredictorsinSpeciesDistribution Models(SDMs)andforimplementingmulti-scalespeciesmonitoringprograms.Herewe Editor:ShijoJoseph,KeralaForestResearch Institute,INDIA describeamodellingframeworktoassessthepredictiveabilityofEFAsasEssentialBiodi- versityVariables(EBVs)againsttraditionaldatasets(climate,land-cover)atseveralscales. Received:November15,2017 Wetesttheframeworkwithamulti-scaleassessmentofhabitatsuitabilityfortwoplantspe- Accepted:June5,2018 ciesofconservationconcern,bothprotectedundertheEUHabitatsDirective,differingin Published:June18,2018 termsoflifehistory,rangeanddistributionpattern(IrisboissieriandTaxusbaccata).Wefitted Copyright:©2018Arenas-Castroetal.Thisisan foursetsofSDMsforthetwotestspecies,calibratedwith:interpolatedclimatevariables; openaccessarticledistributedunderthetermsof landscapevariables;EFAs;andacombinationofclimateandlandscapevariables.EFA- theCreativeCommonsAttributionLicense,which basedmodelsperformedverywellattheseveralscales(AUC from0.881±0.072to permitsunrestricteduse,distribution,and median reproductioninanymedium,providedtheoriginal 0.983±0.125),andsimilarlytotraditionalclimate-basedmodels,individuallyorincombination authorandsourcearecredited. withland-coverpredictors(AUC from0.882±0.059to0.995±0.083).Moreover,EFA- median DataAvailabilityStatement:Allrelevantdataare basedmodelsidentifiedadditionalsuitableareasandprovidedvaluableinformationonfunc- withinthepaperanditsSupportingInformation tionalfeaturesofhabitatsuitabilityforbothtestspecies(narrowlyvs.widelydistributed),for files. bothcoarseandfinescales.Ourresultssuggestarelativelysmallscale-dependenceofthe Funding:Thisresearchwasdevelopedaspartof predictiveabilityofsatellite-derivedEFAs,supportingtheiruseasmeaningfulEBVsinSDMs theECOPOTENTIALprojectfinancedbyEuropean fromregionalandbroaderscalestomorelocalandfinerscales.Sincetheevaluationofspe- Union’sHorizon2020researchandinnovation programundergrantagreementNo.641762.SAC, cies’conservationstatusandhabitatqualityshouldasfaraspossiblebeperformedbasedon DASandJPHreceivedfundingfromthe scalableindicatorslinkingtomeaningfulprocesses,ourframeworkmayguideconservation ECOPOTENTIALproject.JGwassupportedbyFCT managersindecision-makingrelatedtobiodiversitymonitoringandreportingschemes. (PortugueseScienceFoundation)throughPhD grantSFRH/BD/90112/2012.DASreceivedfunding PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 1/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels fromMinisteriodeEducacio´n,CulturayDeporte, Introduction JC2015-00316grant,andMinisteriodeCienciae Globalenvironmentalchangesareaffectingspeciesdistributionsandecosystemfunctioning Innovacio´n,CGL2014-61610-EXPproject.The fundershadnoroleinstudydesign,datacollection worldwide,withprofoundeffectsintermsoflossandrelocationofbiodiversity[1,2].Thus,a andanalysis,decisiontopublish,orpreparationof continuousupdateofbiodiversitystatusandtheeffectivenessofconservationpoliciesare themanuscript. internationalgoalsforthecomingyears[3,4].Differentapproachescombiningstatistical Competinginterests:Theauthorshavedeclared modellingtoolsandbiodiversitymonitoringhaveallowedtoquantifyandassessbiodiversity thatnocompetinginterestsexist. distributionandchangeacrossscales[5,6].Oneofthemostcommonapproachesforassessing speciesdistributionanddynamicshasbeenthedevelopmentofSpeciesDistributionModels (SDMs)[7–9](andreferencestherein).SpeciesDistributionModels(SDMs)canbedefinedas associativemodelsforquantifyingspecies-environmentrelationships,andarethusbasedon assessingthespecies’ecologicalniche[10,11].Fromatheoreticalperspective[12],thespecies fundamentalnicheisaresultoflimitingabioticfactorsatabroadgeographicalscale,typically relatedtoclimateoredaphicandgeologicalproperties[13];whereastherealizednicheis definedatafinerscalebyhabitatandbioticfactors,mainlyrelatedtointerspecificcompetition anddispersalability,amongothers[14].InthecontextofSDMs,theecologicalnicheisconsid- eredasahypervolumeinmultivariateenvironmentalspacethatdepictsaspecies’environmen- talrequirementsorlimitations[12,15].Oncetheecologicalnicheofaspecieshasbeendefined throughstatisticalfunctions,thesecanbeappliedtoscenariosofclimateorlandscapecondi- tionstoprojectthefuturevariationofthespecies’distribution.However,theapplicationof SDMsinconservationandmanagementisstillhamperedbysignificantspatialandtemporal biases(e.g.taxonomyerrors,samplingoverlapping,interpolationswithinsufficientdata,inac- curaciesingeo-referencing,etc.),bothinspeciesoccurrencedata,andinthesetofpredictive variablesthatrepresenttheenvironmentalvariability[16]. Oneofthemajordrawbacksofspeciesdistributionmodellingisthatspeciesoccurrences areusuallyavailableatcoarseresolutions[17],whiletheirconservationandmanagement withinprotectedareasareneededatfinerresolutions[18,19].Anotherdrawbackisthatmany predictivevariablesarenotmeasurableoravailableattherequiredresolution,sosurrogates andinterpolateddata(e.g.frommeteorologicalstations)havetobeusedinstead[20,21].Struc- turalpredictorsderivedfromthematiccartography,suchasland-covervariables,alsohold limitationssincetheymaynotrepresentrelevantlandscapefeaturesnortheecosystempro- cessesrelevantforthetargetspecies.Furthermore,bothoccurrencedataandpredictorvari- ablescanhaveinadequateordissimilarspatial,thematicand/ortemporalresolutions[22]. Earthobservationtechniquesarebecomingafundamentaltoolkittodealwithsomeof thesemodellingbiasesanddrawbacks[23–26].Satelliteremotesensingofferscontinuousand cost-effectivemeasuresofbothabioticandbioticfactorsacrossspaceandtime,hardlyquanti- fiablebyothermeans[27,28].Recentproductsderivedfrommultispectralandhyperspectral sensorsareplayingakeyroleinthequantification,assessmentandforecastingofbiodiversity [29–31]byprovidingmeaningfulinformationtopredictspeciesdistributionsthroughclimatic variables[32]aswellasstructural[33]orfunctionaldescriptorsofecosystems[34,35]. Theuseofsatellite-derivedecosystemfunctionalattributes(EFAs)aspredictorsinSDMs canhavesomeadvantages[35].EFAsaredescriptorsoftheoverallecosystemfunctioning [36,37],i.e.theexchangesofmatterandenergybetweenthebiotaandthephysicalenviron- ment,including,amongothers,indicatorsofproductivity,seasonalityandphenologyofcar- bongains[38–41].Attheregionalscaleovernaturalvegetation,EFAsaremainlydrivenby climatewhiletheyaremorelinkedtoland-coverandland-useatthelocalscaleandwith increasinghumaninfluence[39].Thisway,EFAsofferanintegrativeandquickerviewofeco- systemresponsestoenvironmentaldriversandchangesthanstructuralorcompositionalattri- butes[42],linkingspeciesresponsestopressuresonecosystemfunctioningandstate[35], PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 2/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels whichisanadvantageforimplementingspeciesmonitoringprograms[9,37,43].Mostimpor- tantly,EFAscanbemonitoredthroughremotesensingandderivedgloballyundercommon protocolsatrelativelyhightemporalandspatialresolutions,whichisparticularlyinteresting fortrackingandforecastingbiodiversitychangeswhenappliedinSDMs[35].Inaddition, EFAscanalsohelptoovercomedrawbacksofcurrentclimateandland-coverdatasets,suchas theirdifficultytobeupdated[41]andtheinterpolationeffects[32].Alcaraz-Seguraetal.[35] alreadyprovidedafirstillustrationofthepotentialadded-valueofEFAsasmeaningfulspe- cies-levelEssentialBiodiversityVariables(EBVs)[30,44,45]toguidemonitoringschemesfor multipleprotectedspecies,duetotheirgoodpredictivepowerinSDMs. Severalstudiesindicatethatclimateimpactsonspeciesdistributionsaremostapparentat macro-scales[6,46],whereasland-covermaybeamoreimportantconstraintthanclimatefor speciespresenceatthelocalscale[25,47].ThepredictiveroleofEFAsinSDMsmaythusbe scale-dependent,asdemonstratedforotherabioticandbioticpredictors[48–50].Inaddition, therelevanceofEFAsforrangeshiftspredictionisknowntovaryacrossgroupsofspecies [35].AccountingforthesepotentialcaveatsoftheapplicationofEFAsinSDMsisofhigh importanceforreal-worldconservationchallenges[51],particularlytoassessthestatusand trendsofspeciesofconservationconcern[52].Buildingonthisrationaleandonthemodel- assistedbiodiversitymonitoringapproach[9,35],themaingoalofthisstudyistoassessthe predictiveabilityofremotely-sensedecosystemfunctionalattributes(EFAs)inSpeciesDistri- butionModels(SDMs),andtherebytotesttheirpotentialasEssentialBiodiversityVariables (EBVs)forbiodiversitymonitoringandreporting.Forthis,wedevelopedandappliedamulti- scalemodellingframeworkundertwospecificobjectives:1)tocomparetheperformanceand scale-dependence(intermsofspatialextentandresolution)ofEFAsaspredictorsinSDMs, againsttraditionalclimateandland-coverpredictors;and2)tocomparethespatialprojections ofhabitatsuitabilityderivedfromSDMsbasedonEFAsandontraditionalpredictorsatvari- ousscales,andthecorrespondingimplicationsforreportingtheconservationstatusofpro- tectedspecies(e.g.underArt.17oftheHabitatsDirective[53]),andforguidinglocal conservationstrategies.Ourtestablehypothesesandtheirunderlyingrationalearedetailed below(‘Modellingframework’section). Materialsandmethods Studyareas Wetestedourmulti-scaleapproachusingthreenestedstudyareas(Fig1):TheIberianPenin- sula(IP),theIberianNorthwest(GaliciainSpain,andnorthernPortugal;NW),andthe Peneda-GerêsNationalPark,inPortugal(NP).WeestablishedtheIP(581000km2)asthebio- geographiccontextofreferencetofitsub-continentalmodels,sinceitscombinationofnatural history,geologicandtopographicheterogeneity,andstrongclimaticgradientsoffersawide rangeofenvironmentalconditionsforhostingabroadvarietyofendemicandrareplants[54]. WithintheIP,weconsideredthenorthwestcorner(NW),andwithinitthePeneda-Gerês NationalPark(NP),tofitregionalandlocalmodels,respectively.TheNW(48000km2)isa diversephytogeographicareawithadiversifiedflora(ca.2300nativespecies)dominatedby EurosiberianandMediterraneanelements,andwithalargenumberofnarrowendemicsand biogeographicdisjunctions[55].Peneda-Gerês(700km2)isamountainrangehostingmore than800plantspecies,includingvariousnarrowlydistributedendemicsandotherregionally rarespecies. TheIberianPeninsula(Fig1Aand1B)ischaracterizedbyastrongclimaticgradient,from therainiestandcoldestareaswithtemperateclimateinthenorthandnorthwest(Euro-Sibe- rianregion),tothedriestandwarmestareasinthesouthandsoutheast(Mediterranean PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 3/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels Fig1.Studyareasandspeciesoccurrencedata.(a)Thethreenestedstudyareasandoccurrencedataoftargetspecies(IrisboissieriandTaxusbaccata)in (b)theIberianPeninsulaat5km2cellsize,(c)theIberianNorthwestat5km2(emptysquares)and1km2(filledsquares),and(d)thePeneda-Gerês NationalParkat1km2cellsize. https://doi.org/10.1371/journal.pone.0199292.g001 region).Thisenvironmentalcontextgrantsahighdiversityofhabitatsandbioticcommuni- ties.TheEuro-Siberian(Atlantic)regionholdsvegetationtypessuchasalpinenaturaland seminaturalgrasslandsandheathlands,andforestecosystemswithalpineneedleleafconifer- ousandtemperatebroadleafdeciduousandsemideciduousspecies;whereastheMediterra- neanregionisprimarilyrepresentedbyevergreenbroadleafandconifercanopyspeciesin PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 4/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels forestecosystems,andahugerepresentationofshrubandherbaceousspeciesabletoresistthe adverseconditionsoflongsummer-droughtperiods.Landscapesinbothregionshavebeen largelytransformedbyhumanmanagement,firstthroughacombinationoffarming,grazing, fires,andfirewoodcollection,morerecentlyintospecializedagricultural,agro-forestryorfor- estryproductionlandscapes.ProtectedareasacrosstheIPnowholdmostofitsremaining mosaicsofnaturalandseminaturalvegetation. TheNWoftheIberianPeninsula(Fig1C)isamountainousterritorywithaltitudesranging fromsealevelto2650m,withslopesoftenover25%.Theclimateisquitevaried,butfollowsa generaloceanicpatternwithannualrainfallfrom600to2000mm(3000mminmountain areas)[56].Theaverageannualtemperaturerangesfrom5˚Cinthehighestmountainsto 15˚Cinthelowlandsouthernterritories.Inspiteofthegreatinfluenceofhumanactivities, andtheexpansionofalienspeciesfortimberproductionandornamentaluse,thecurrentveg- etationstillholdssimilaritieswiththeEuropeanAtlanticflora[57,58].Deciduousforestdomi- natedmainlybyQuercusroburandFagussylvaticausuallyappearrestrictedtothetop-halfof theregion,namelyinsideprotectedareas.MixedforestsofUlmussp.,Acersp.,andSalixsp., amongothers,aremostlyfrequentatthesouthwest.Replacingforests,seralscrubofthorny bushes(Cytisussp.,Ulexsp.andother)arecommonacrosstheregion,asaremeadowsand othergrasslandswhichplayarelevantroleintraditionalagriculturalsystems.Towardssouth, thetransitionintotheMediterraneanregionisrevealedbytheoccurrence(anddominance)of evergreenvegetationsuchasforestsofQuercusrotundifolia, Q.suber,Q.fagineaandscrub dominatedbyArbutusunedoandotherevergreenshrubs. ThePeneda-GerêsNationalPark(NP;Fig1D)isamountainousprotectedarealocatedat thecoreofNWIberia.Theaverageannualtemperaturesrangefrom5˚Cinthehighlandsto 20˚Cinthevalleys;whereasthetotalmeanrainfallreaches2000mmperyear(withmorethan 130rainydaysperyear),andsnowfallisfrequentinthemountaintops.Thesteeptopographic andclimaticvariationshaveproducedamosaicofvegetationtypescharacteristicofMediterra- nean,Euro-SiberianandAlpineenvironments.DeciduousoakforestsofQ.roburandQ.pyre- naicaarecommonthroughouttheParkinareasabove700m.Still,long-termgrazingandthe useoffirehavefacilitatedthereplacementofforestsbypastures,heathandscrub(74%ofthe Park’sarea).ForestplantationsmainlyofPinuspinasteralsooccupysubstantialareas.The highestrockyoutcropsandremoteareasarethemainhabitatforseveralendemicspecies, manyofwhichareconsideredendangeredandareundernationalandEuropeanprotection programs. Testspeciesandoccurrencedata Astestspecies,wefocusedontwovascularplantscoveredbytheHabitatsDirective(hereafter HD)andforwhichEUmember-statesholdregularreportingobligations(underArticle17of theHD):the‘Gerêslily’(Iris[Xiphion]boissieriHenriq.;AnnexIV),anendemic,narrow-ran- gedbulbousplantholdinga‘criticallyendangered’conservationstatus(http://www. iucnredlist.org/details/162312/0),andthe‘Europeanyew’(TaxusbaccataL.),indicatorand dominantspeciesofHDAnnexIpriorityhabitattype9580(cid:3)(‘MediterraneanTaxusbaccata woods’).Thesetwospeciessharplydifferintermsoftheirdistributionrange(narrowlyvs. widelydistributed)andlife-form(bulbousgeophytevs.tree),representingcontrastingrarity typesandthusdifferentchallengesforpredictivenichemodelling. TheGerês-lily(Xiphionboissieri(Henriq.)Rodion=IrisboissieriHenriq.)isanarrow endemicbulbousplantoftheIridaceaefamily.ItislistedinAnnexIVoftheHDandis restrictedtomountainousareasofNWIberianPeninsula.Portugalconcentratesthelargest populationsofthespecies,especiallyinthePeneda-GerêsNationalPark,whereasinSpainit PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 5/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels occursassmallpopulationsintheneighbouringSierrasofBaixaLimia-Xure´sandSantaEufe´- miaandinafewothermountains(https://eunis.eea.europa.eu/species/186604).Itmainlycolo- nizessmalldepressionswithaccumulationofcoarsedeposits,butitalsooccursinlowscrub andincrevicesofgraniteoutcrops,atelevationsbetween500and1500meters[55].Theaban- donmentofpastoralsystemsistriggeringvegetationsuccessionandpotentiallyreducingits areaofsuitablehabitat[59]. TheEuropeanyew(Taxusbaccata)isalong-livingtreenativeinmostofEurope,withthe southernlimitofitsdistributionrangeinmountainousareasoftheMediterraneanbasin [60,61].ThereisevidenceofstrongregressioninsouthwestEurope,whereT.baccatanow occursassmall,isolatedpopulations,makingitavulnerablespecies[62].T.baccatawoodlands mayoriginateasasenescentordisturbedphaseofdeciduouswoodlands,inwhichthespecies occurredasanunderstorytree.Yewstandscanalsobefoundalongmountainstreamswhere thetreescanshelterfromfiredisturbanceandfromexpansionoftallcanopybroadleaved trees.EvenifthishabitattypeisprotectedundertheHD(https://eunis.eea.europa.eu/habitats/ 10239),thereisalackofknowledgeaboutthedistributionandconservationstatusofT.bac- catawoodlandsinthissouthernedgeoftheirrange[63,64]. WeusedoccurrencerecordsforI.boissieriandT.baccata(presence-onlydataset)tocom- putetheresponsevariablesforSDMcalibration.Allgeoreferencedrecordswereobtained fromtheGlobalBiodiversityInformationFacility(http://www.gbif.org;accessedSeptember 2016)withgeographicaccuracyequalto,orbetterthan,1km2spatialresolution.Anadditional setof72recordsresultingfromalocal(Peneda-Gerês)surveyofI.boissieriperformedin2007 wasaddedtothisdataset.Subsequently,recordswerecheckedusingGIStodetectgeoreferen- cingandspeciesnomenclatureerrors.Thefinaloccurrencedatasetwasassumedtorepresent thewhole(ormostofthe)geographicandenvironmentalrangeofbothspecies(cf.Fig1).The finaldatasetforI.boissieriincludedrecordsthatrangedfrom1992to2007,whileforT.baccata theyrangedfrom1971to2016(Table1)(S1andS2Datasets). Totestourmodellingapproachatthethreefocalscales,theavailablerecordswerethen aggregatedintwospatialgridswithdistinctcellsize–5km2forthesub-continental(IP)and theregional(NW)scales,and1km2fortheregional(NW)andthelocal(NP)scales.Thetest wasthusconductedconsideringtwodimensionsofspatialscale:theresolutionofthespecies records(1x1kmvs.5x5kmgridcellsize)andthespatialextentofthetestarea(IPvs.NWvs. NP). Modellingframework Thereisaccumulatedevidenceoftheimportanceofclimaticandland-coverpredictorsin SDMs,theirperformanceandscale-dependence[20,65].Remotesensingcanalsoprovidea broaddiversityofenvironmentaldescriptors[26]toSDMs,butthereisstilllittleknowledgeof Table1. Occurrencedata(numberofgridcells)availableperspeciesateachcombinationofspatialresolution andspatialextent. Spatialresolution Spatialextent Speciesdistributionrecords Irisboissieri Taxusbaccata 5km2 IP 30 440 5km2 NW 30 37 1km2 NW 91 139 1km2 NP 62 50 IP=IberianPeninsula;NW=North-westernIberianPeninsula;NP=Peneda-GerêsNationalPark https://doi.org/10.1371/journal.pone.0199292.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 6/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels Table2. Specifictestablehypothesesforcomparisonoftheperformanceandscale-dependence(intermsofspatialextentandresolution)ofecosystemfunctional attributes(EFAs)againsttraditionalclimateandland-coverdatasetsinSpeciesDistributionModels(SDMs). Hypotheses Rationale H GiventhatEFAscapturetheoverallintegrativeresponseofthesystemtoallenvironmentalfactors[35,38],remotely-sensedEFAsshouldperformas 1 predictorsinSDMssimilarlyorbetterthanthecombinationofinterpolatedclimatologygridsplusland-coverdata. H Beingclimatethemainspeciesdriverattheregionalscaleandland-coverrelativelymoreimportantatthelocalscale(e.g.[6]),theadded-valueofEFAs 2 willalsobescale-dependent. H Asobservedinpreviousstudies[35],suchscale-dependence H Foranarrowlydistributedspecies,climateshouldperformbetterthanEFAsat 3 3.1 shoulddifferaccordingtothespeciesdistributionrange. macro-scalesandcoarseresolutions,whiletheyshouldsimilarlyperformatlocal scalesandfineresolutions. H Forawidelydistributedspecies,climateandEFAsshouldperformsimilarlybothat 3.2 macro-scalesandcoarseresolutions,andatlocalscalesandfineresolutions. https://doi.org/10.1371/journal.pone.0199292.t002 thepredictiveabilityofthedifferentvariables,andoftheeffectofspatialextentanddatareso- lution(butsee[66,67]).Toassessthepredictiveabilityofremotely-sensedEFAsinSDMs,we establishedtestableguidinghypotheses(Table2)basedonliteraturereviewandexpertknowl- edge.Totestthesehypotheses,wedevelopedamodellingsetup(Fig2)thatinvolvedtwospe- cies,twospatialresolutions,threespatialextents(Fig2),andfourgroupsofpredictors (Table3):1)interpolatedclimatedata,2)landscapecomposition,structureanddiversitymet- rics,3)remotelysensedproxiesofvegetationfunctioning(EFAs),and4)acombinationofcli- mateandlandscape(land-cover)metrics.Thismodellingsetupwasalsodesignedtofacilitate theinterpretationofEFApredictorsintermsofclimaticandland-coverconstraints,andthe identificationofthemostrelevantpredictorsateachofthefocalscales. Environmentalpredictors. ThesetofpredictorsusedforSDMcalibrationincluded (Table3): Fig2.Multi-scalemodellingframework.Generalframeworktotestthescale-dependenceoftheperformanceof satellite-derivedEcosystemFunctionalAttributes(EFAs)aspredictorsinSpeciesDistributionModels(SDMs). https://doi.org/10.1371/journal.pone.0199292.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 7/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels Table3. Finalsetsofpredictorsusedtocalibratemodels. Thedescriptionandattributesoftheoriginaldatasetsarealsoprovided. Set Predictors Code Description Units Spatial Source resolution CLI MeanTemperatureofWettest TmWQ Theaveragetemperatureofthethreeconsecutive ˚C(cid:3)10 0.0083˚ http://www.worldclim.org Quarter monthswiththehighestcumulativeprecipitationtotal. (~1km) MeanTemperatureofDriest TmDQ Theaveragetemperatureofthethreeconsecutive Quarter monthswiththelowestcumulativeprecipitationtotal. TemperatureAnnualRange TAR Themeandifferencebetweenthemonth’smaximum andminimumtemperatureoverthetwelvemonthsof theyear. PrecipitationofWettest PpWM Thetotalprecipitationthatprevailsduringthewettest mm Month month(withthehighestcumulativeprecipitationtotal). PrecipitationofDriestMonth PpDM Thetotalprecipitationthatprevailsduringthedriest month(withthelowestcumulativeprecipitationtotal). PrecipitationSeasonality PS Theratioofthestandarddeviationofthemonthlytotal (CoefficientofVariation) precipitationtothemeanmonthlytotalprecipitation overthecourseoftheyear. LC Composition Agriculture agric Areascharacterizedbyherbaceousvegetationthathas % 0.00083˚ http://land.copernicus.eu/ beenplantedorisintensivelymanagedforthe area (~100m) productionoffood,feed,orfiber. Forest forest Areascharacterizedbytreecover,naturalorsemi- naturalwoodyvegetation,generallygreaterthan6 meterstall. Scrubs scrubs Areascharacterizedbynaturalorsemi-naturalwoody vegetationwithaerialstems,generallylessthan6meters tall,withindividualsorclumpsnottouchingto interlocking. Baresoil bs Areascharacterizedbybarerock,gravel,sand,silt,clay, orotherearthenmaterial,withlittle(widelyspacedand scrubby)orno"green"vegetationpresentregardlessof itsinherentabilitytosupportlife. Diversity Shannon’s SHDI Proportionofthelandscapeoccupiedbyagivenpatch DiversityIndex class. Structure MeanPatch AREAmean Theaveragemeansurfaceofpatches. Area EFAs ALBAnnualMaximum ALBmx TheaveragebetweenDaytimeBlack-Sky(Direct - 0.002˚ https://lpdaac.usgs.gov/ radiation)ShortwaveAlbedoandWhite-Sky(Diffuse (~250m) dataset_discovery/modis/ radiation)ShortwaveAlbedo. modis_products_table/ EVIAnnualMaximum EVImx TheinterannualmeanoftheEVImaximum. mod13q1 EVIAnnualMinimum EVImn TheinterannualmeanoftheEVIminimum. EVIsineofthemomentumof EVIdmxs Themomentumofthemaximumgreen-updaysofyear maximum decomposingitintothesineorthogonalvectorrelated tospringinessandautumnessaxis. LSTStandardDeviation LSTsd TheinterannualstandarddeviationoftheLandSurface ˚C Temperaturemean. LSTAnnualMinimum LSTmn TheinterannualmeanoftheLandSurfaceTemperature minimum. https://doi.org/10.1371/journal.pone.0199292.t003 1. Bioclimaticvariables(CLI)mainlyrelatedtotemperatureandprecipitationregimes,from theWorldClimversion2(1970–2000period)databasewithaspatialresolutionof30arc- seconds(~1km)(http://www.worldclim.org;[68]).CLIpredictorswereselectedfortheir predictiveabilityaswell-knowndriversofspeciesdistributionsatbroaderscales[69].The completeCLIdatasetincluded19candidatepredictors. 2. Severalstudieshaveshowntheimportanceoflandscapecompositionandconfiguration forpredictingthedistributionofspecies[70].Wethereforecomputedseverallandscape PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 8/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels variablesfromtheCORINELandCover2006(Label3)databasewithaspatialresolutionof 100meters(http://land.copernicus.eu/pan-european/corine-land-cover).Composition metricswerecomputedas%ofgridcellareacoveredbyeachLCclass.Wealsocomputed spatialconfigurationmetricsusingtheFRAGSTATSsoftware(version4.2)[71].Thecom- pletelandscapedataset(LC)included61compositionandconfigurationcandidate predictors. 3. EcosystemFunctionalAttributes(EFAs).ThreeMODIS(ModerateResolutionImaging Spectroradiometer)satellite-productswereselectedtodescribethreedimensionsofecosys- temfunctioning:theEnhancedVegetationIndex(EVI)(MOD13Q1.006)asasurrogatefor thecarboncycledynamics,theLandSurfaceTemperature(LST)(MOD11A2.005)asasur- rogateofsensibleheatdynamics,andAlbedo(MCD43B3.005)asasurrogatefortheradia- tivebalance[37],allforthe2001–2016periodattheoriginalspatialresolutionof230m.We selectedEVIinsteadofanyothervegetationindex(suchasSAVI,ARVI,orNDVI)asan indicatorofcarbongainssinceitisknowntobemorereliableinbothlowandhighvegeta- tioncoversituations,andresistanttobothsoilinfluencesandcanopybackgroundsignals, andatmosphericeffectsonvegetationindexvalues[72,73].Forthesethreedimensionsof ecosystemfunctioning(EVI,LSTandAlbedo),weusedGoogleEarthEngine[74]toderive theinter-annualmeanofthefollowingeightsummarymetricsoftheirseasonaldynamics: annualmean(surrogateofannualtotalamount),annualmaximumandminimum(indica- torsoftheannualextremes),seasonalstandarddeviation(descriptorofseasonality),and sineandcosineofthedatesofmaximumandminimum(indicatorsofphenology) [35,39,75].EVIvaluesrangedfrom-1to1,withhealthyvegetationgenerallyholdingvalues between0.20and0.80.Temperatures(LST)rangedfrom-25˚Cto45˚C,andAlbedovalues rangedfrom0to1(freshsnowandbaresoilusuallyfallaround0.9).Sineandcosineofthe maximumandminimumgreen-updaysoftheyeararerelatedtospringiness/autumness andwinterness/summerness,respectively[39,76].Thus,valuesnear+1onthesinearein March/April,near–1areinSeptember/October,whilevaluesnear+1forthecosinearein December/January,–1areinJune/July.ThecompleteEFAsdatasetincluded24ecosystem functionalattributes(8metricsx3dimensions)ascandidatepredictors. Alldatasetswerere-projectedtocoordinatesystemWGS84/UTMzone30(http:// spatialreference.org/ref/epsg/wgs-84)andresampledfromtheiroriginalspatialresolutionsto theresolutionofspeciesoccurrencerecords.Resamplingwasfirstdonetoa1km2forusagein theregional(NW)andlocal(NP)scalemodels,andtoa5km2cellsizefortheregional(NW) andsub-continental(IP)scalemodels.Ashighlycorrelatedvariablesmayhamperthefitting andvalidationofmodels[77],weconductedamulticollinearityanalysisofdatasetsusingthe Spearman’scorrelationcoefficientandtheVarianceInflationFactor(VIF)[78,79].Consider- ingfurtherthatthenumberofexplanatoryvariablesinthemodelsinfluencebothaccuracy andpredictivepower[80],andthatthespecies’prevalencehasastrongimpactonmodelper- formance[81],weestablishedthatnomorethanm/5predictorsshouldbeincludedineach competingmodelforboththenarrow-rangedandthewide-rangedspecies,wheremisthe numberofoccurrencerecords[82].Therefore,sincetheminimumnumberofrecordswas30 (cf.Table1),onlysixindependentpredictorswithSpearman’spairwisecorrelation<0.8[83] andVIF<4(S1–S4FigsandS5andS6Figs,respectively),andwiththehighestrelativecontri- butionpermodelextentandspatialscalecombinationinpreliminarytests,wereconsideredin modelcalibration(i.e.thoselistedinTable3).Thefinalsetofpredictorswasdefinedconsider- ingboththeresultsofthestatisticaltestsand,whentwoormorepredictorswerehighlycorre- lated,onlytheonerepresentingamoredirectdeterminantoftheecologyanddistributionof thespecieswaskept,basedonexpertjudgementandscientificliterature. PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 9/31 Ecosystemfunctionalattributesaspredictorsinspeciesdistributionmodels Table4. Rationaleforthefourgroupsofmodelsincludedinthemodellingsetup. Datasets Rationale References CLI Climaticgradients(CLI)usuallygovernspeciesdistributionsatglobaltoregionalscales. [20] However,climatemaynotaffectequallythedistributionofnarrow-rangedandwide- [84] rangedspecies. [69] LC Land-cover(LC)mainlyaffectsspeciesoccupancypatternsatthelandscapeandlocalscales. [85] Landscapecompositionandstructurehavebeenusedforpredictingspeciesdiversityaswell [25] asthedistributionandabundanceofindividualspecies. [86] CLI Climate(CLI)andland-cover(LC)areknowntoinfluencespeciesdistributionsatvarious [87] +LC scales,thereforemodelscombiningclimateandland-coverpredictorsareduetoprovide [88] robustpredictionsofthosedistributions.Climateandland-coverarealsodriversofEFAs, [89] andsoCLI+LCmodelsareassumedtoapproach,fromastructuralperspective,the potentialeffectsofEFAsonthosedistributions. EFAs TheannualmetricsderivedfromEVItime-seriesarecloselyrelatedtothedynamicsof [38] ecosystemcarbongains,andtherefore,tonetprimaryproductivity.Thesefunctional [90] attributes(EFAs)allowcapturingmostofthevariabilityinphenology,seasonalityand [40] productivity,holdinghighpredictivepoweroverspeciesdistributionsatthelocaland regionalscales. https://doi.org/10.1371/journal.pone.0199292.t004 Modellingsetup. Weestablishedthreegroupsofmodelsrepresentingtheeffectsofthe threesetsofpredictorsdescribedabove(climate,land-cover,andEFAs)onthedistributionof thetwotestspecies(Table4).Additionally,acombinationofpredictorsrelatedtoclimateand landscapecomposition/configurationwasusedinafourthsetofmodels,usingthesamepre- dictorsusedfortheCLIandLCmodels. Toanalyseandrankmodelperformance,weconductedamodellingworkflowtestingthe effectofthethreefocaldriversofmodelperformance(predictorset,spatialextent,andspatial resolution),andforthenarrow-rangedandthewide-rangespecies.Thus,wecomparedmodel performanceinthreesetsoftests:1)differentpredictorsets(CLI,LC,CLI+LC,EFAs),atsame pixelsizeandspatialextent;2)differentpixelsizes(1km2vs.5km2),forthesamespatialextent andwiththesamepredictorset;and3)differentspatialextents(IPvs.NWvs.NP),atthesame pixelsizeandforthesamepredictorset. Modelfittingandevaluation. WefittedSpeciesDistributionModels(SDMs)and obtainedspatialprojectionsunderanensemble-forecastingframeworkimplementedonbio- mod2package([91];availableathttp://cran.r-project.org/web/packages/biomod2/index.html). Theensemble-forecastingframeworkhasbeenestablishedasapowerfultoolforanalysingspe- cies-environmentalrelationships[92].Modelswerefittedusingall10modellingtechniques availableinbiomod2,foreachsetofmodelsandusingdefaultparameters.Sincealgorithms requiretheinputof(pseudo)absences[93],andsincetrue-absencedatawerenotavailablefor thetargetspecies,pseudo-absencesweregeneratedbyrandomlyassigningunoccupiedgrid cellseachthestudyregion,withthefollowingconstraints:1)generatingthesamenumberof pseudo-absencesasofpresencestoavoidpotentialbiascausedbydifferentlevelsofprevalence inthepresence/absencedatasets[94];and2)definingaminimumdistancebetweenpseudo- absences,correspondingwitheachgrainsize(5kmand1km),andwithoutoverlappingwith presences[95],toavoidspatialautocorrelationandinordertocoverthedifferentecological conditionsineachstudyarea.Uncertaintywascontrolledbygenerating30differentsetsof pseudo-absencesforeachspeciesandrunningthewholeprocess30times,resultingin9300 individualmodelsproducedforeachcombinationofspecies,spatialextentandgrainsize. ModelaccuracywasweremeasuredastheAreaUndertheCurve(AUC)ofreceiveropera- torcharacteristic(ROC)curves.AUCisarobustthreshold-independentmeasureofamodel’s abilitytodiscriminatepresencefromabsence[79,96],rangingbetween0and1(measures below0.7wereconsideredpoor,0.7–0.9moderate,and>0.9good).Theresultingmodels PLOSONE|https://doi.org/10.1371/journal.pone.0199292 June18,2018 10/31
Description: