Christian Hugo Hoffmann Assessing Risk Assessment Towards Alternative Risk Measures for Complex Financial Systems Assessing Risk Assessment Christian Hugo Hoffmann Assessing Risk Assessment Towards Alternative Risk Measures for Complex Financial Systems Christian Hugo Hoffmann Kreuzlingen, Switzerland Dissertation der Universität St. Gallen, 2017 Die Universität St. Gallen, Hochschule für Wirtschafts-, Rechts- und Sozialwissen- schaften sowie internationale Beziehungen (HSG), gestattet hiermit die Drucklegung der vorliegenden Dissertation, ohne damit zu den darin angesprochenen Anschauun- gen Stellung zu nehmen. OnlinePlus material to this book is available on http://www.springer.com/978-3-658-20032-9 ISBN 978-3-658-20031-2 ISBN 978-3-658-20032-9 (eBook) https://doi.org/10.1007/978-3-658-20032-9 Library of Congress Control Number: 2017957211 Springer Gabler © Springer Fachmedien Wiesbaden GmbH 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer Gabler imprint is published by Springer Nature The registered company is Springer Fachmedien Wiesbaden GmbH The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany Table of Contents List of Tables and Figures ................................................................................................................ ix Abstract ............................................................................................................................................. xi Zusammenfassung .......................................................................................................................... xiii Introduction ....................................................................................................................................... 1 Part I: Concepts, Model Level and Risk Assessment ................................................................ 21 1. Introduction to Part I ................................................................................................................... 23 2. Literature Synthesis, Theoretical Background and Research Focus ............................................ 25 2.1. Complexity and Modern Financial Systems ...................................................................... 25 2.2. Risk and Risk Management in the Financial World .......................................................... 32 2.2.1. Risk modeling ..................................................................................................... 37 2.2.2. Value at Risk (VaR) ............................................................................................ 41 2.2.3. Expected Shortfall (ES) ...................................................................................... 47 2.3. Systemic Risk Assessment ................................................................................................ 49 2.3.1. Tools primarily for regulators: Conditional Value at Risk (CoVaR) and Systemic Expected Shortfall (SES) ..... 51 2.3.2. Extreme Value Theory (EVT) ............................................................................. 53 2.4. General Appraisal ............................................................................................................. 55 2.4.1. Advantages of conventional risk models and measures....................................... 56 2.4.2. Weaknesses of conventional risk models and measures ...................................... 58 2.5. Excursus: Benoît Mandelbrot's Plea for Fractal Methods .................................................. 63 3. Research Questions..................................................................................................................... 73 4. On an Adequate Concept of Risk and Systemic Risk in the Realm of Banking ........................ 75 4.1. The Notion of Risk ........................................................................................................... 75 4.2. The Concept of Systemic Risk .......................................................................................... 91 5. On the Relevance of Systemic Risks for Banks ........................................................................ 103 5.1. Why should Banks take account of, and try to deal with, Systemic Risks? ..................... 103 5.2. What are concrete Systemic Risk Scenarios for Banks? ................................................. 115 6. Dealing with Quantitative Risk Management in Banking as a Complex Systems Problem ...... 123 6.1. A Trichotomy of Scientific Problems – Warren Weaver’s Scheme as a General Answer to How to Manage Complexity .......................................................................... 128 6.1.1. Tackling disorganized complexity versus organized simplicity ........................ 128 6.1.2. Disorganized complexity and statistical techniques. ......................................... 131 6.1.3 Tackling organized complexity: open questions remain....................................... .134 6.1.4. Synopsis ............................................................................................................ 136 6.2. Weaver’s Taxonomy Revisited: Attempts of Clarification, Extension and Refinement .. 139 6.2.1. Approaches towards the operationalization of Weaver’s concept of organized complexity ........................................................................................................ 139 6.2.2. The bigger picture of complexity and randomness ............................................ 142 vi Table of Contents 6.3. Organized Complexity, Financial Systems and Assessing Extreme and Systemic Risks 152 6.3.1. On the level of structures .................................................................................. 154 6.3.2. On the level of events........................................................................................ 155 6.4. A Tentative Bottom Line ................................................................................................ 157 7. The Fundamental Inadequacy of Probability Theory as a Foundation for Modeling Systemic and Extreme Risk in a Banking Context ................................................................................... 159 7.1. Philosophical Roots of the Problem of Induction: some Preliminaries ............................... 161 7.2. Probability Theory in a Nutshell, its Embeddedness and its Applications....................... 164 7.3. The Central Argument against using Probability Theory for Financial Risk Management ................................................................................................................... 175 7.4. Linking the Central Argument with the Current State of the Literature (IIIa)-c)) ........... 183 8. Conclusion to Part I .................................................................................................................. 187 8.1. Résumé................................................................................................................................... 188 8.2. Outlook: Explanatory Models for In-House Risk Management in Banking .................... 191 Part II: The Transition to the Decision Level, Risk Assessment and Management ............... 195 9. Introduction to Part II ............................................................................................................... 197 10. The Critical Turn: The Renaissance of Practical Wisdom ........................................................ 199 11. Scenario Planning in a Nutshell and its Role in Risk Management in Banking ........................ 205 12. Strengths and Weaknesses of Scenario Planning as a Risk Management Tool ......................... 213 13. Deriving Lessons for Rethinking the Approach to Assessing Extreme and Systemic Risks ..... 219 Part III: In Search of a New Paradigm: The Third Way as a Road to Logic-Based Risk Modeling (LBR) ............................. 223 14. Introduction to Part III .............................................................................................................. 225 15. Theoretical Foundations of a Logic-Based Risk Modeling (LBR) Approach ........................... 231 15.1. A less Restrictive Axiomatization ................................................................................... 231 15.2. Non-Probabilistic Models of Uncertainty ....................................................................... 239 15.3. Ranking Theory .............................................................................................................. 243 15.4. Syntax of a Language for Describing Contracts and Correlations ................................... 246 15.5. Semantics: Financial Contracts as Uncertain Sequences in a Non-Probabilistic Risk Model Context ....................................................................................................... 252 15.5.1. Uncertain sequences by example ...................................................................... 253 15.5.2. From contract value to risk ............................................................................... 257 15.5.3. Formalization of the approach ........................................................................... 258 15.5.4. Concrete instantiations of uncertainty monads: ranking functions .................... 265 15.5.5. Evaluating risk models ...................................................................................... 270 15.6. Model Interpretation and Output: An Exact, Explanatory Scenario Planning Method .... 275 16. Case Study: LTCM and Extreme Risk ...................................................................................... 279 16.1. Example Trade ................................................................................................................ 280 16.2. A Fixed Income Portfolio in LBR ................................................................................... 281 16.3. Analysis .......................................................................................................................... 284 16.3.1. Overview .......................................................................................................... 285 16.3.2. Zoom and filter ................................................................................................. 286 16.3.3. Details on demand............................................................................................. 288 16.4. Discussion and Conclusion ............................................................................................. 288 Table of Contents vii 17. Managerial Implications ........................................................................................................... 291 18. Scales of Measurement and Qualitative Probabilities ............................................................... 297 19. Model Validation ...................................................................................................................... 303 Part IV: Meta Level: Thinking about Thinking and Practices – What it Means to Reach Effective Risk Management Decisions ......................................................................... 321 20. Introduction to Part IV as Overall Conclusion .......................................................................... 323 21. Escaping the Traps for Logicians: Towards Decision-Making Competency in Risk Management ................................................. 325 22. Final Remarks and a Path for Future Research ......................................................................... 339 References ...................................................................................................................................... 345 List of Appendices............................................................................................................................... 377 To access the book’s appendix, please visit www.springer.com and search for the author’s name. URL: http://www.springer.com/978-3-658-20032-9 List of Tables and Figures Table 1: Methods and rules to realize the research objectives. ..................................................... 16 Table 2: Risks banks face and how they measure and manage them. ........................................... 42 Table 3: Overview of systemic risk models and how they might be classified. ............................ 57 Table 4: Classification system for risk definitions and characterization of different risk definition categories. ...................................................................................................... 78 Table 5: A suggested taxonomy of uncertainties and complexities. ........................................... 138 Table 6: A critic's comparison of quantitative risk modeling (theme of Part I) and qualitative risk analyses (theme of Part II). .................................................................. 203 Table 7: Strengths and weaknesses of scenarios and scenario analysis. ..................................... 214 Table 8: Summary of the vocabulary for financial contracts. ..................................................... 252 Table 9: Ranking function , showing the likelihood of default (di) for three counterparties A, B and C. The most likely case is , meaning no defaults. ................. 266 Table 10: obtained by co𝓀𝓀n𝑓𝑓ditioning . (Table 10 is obtained by applying D𝑓𝑓ef𝐴𝐴. 1∧5 .𝑓𝑓11𝐵. ∧to 𝑓𝑓th𝐶𝐶e ranking function in Table 9.) ...... 269 Table 11: 𝓀𝓀Ra𝑓𝑓t′es for LTCM trade. ............𝓀𝓀...𝑓𝑓.. .𝑒𝑒...𝑖𝑖.𝑡𝑡..ℎ.. .𝑓𝑓..𝐴𝐴... ..∨... .𝑓𝑓..𝐵......................................................... 281 Table 12: Validating LBR risk models along a collective of reasonable criteria. ......................... 306 Figure 1: The systems view. .......................................................................................................... 27 Figure 2: The disassembly of complexity I. ................................................................................... 33 Figure 3: Images of three different fractals. ................................................................................... 66 Figure 4: Two relevant risk concepts: Risk I encompasses Risk II and uncertainty. ...................... 89 Figure 5: Risk sharing and systemic risks I. ................................................................................ 107 Figure 6: Risk sharing and systemic risks II. ............................................................................... 110 Figure 7: Event-oriented view of the world. ................................................................................ 111 Figure 8: The feedback view of the world, Part I......................................................................... 111 Figure 9: The feedback view of the world, Part II. ...................................................................... 112 Figure 10: Gross value of $1 invested in LTCM, March 1994 – September 1998. ........................ 119 Figure 11: The evolution of the Systems Approach. ...................................................................... 125 Figure 12: The line of argumentation in Chapter 6 and its embeddedness. .................................... 127 Figure 13: Weaver on probability theory, statistics and fields of application ................................ 133 Figure 14: The disassembly of complexity II: The extended framework. ...................................... 137 Figure 15: The bigger picture of complexity and randomness. ...................................................... 147 Figure 16: Bringing complexity, randomness and risk together..................................................... 151 Figure 17: Heavy/fat and long versus thin and short tails. ............................................................... 171 Figure 18: Normal distributions are not the (new) norm(al)............................................................. 171 Figure 19: The modeling relations. ................................................................................................ 192 Figure 20: Scenario planning as a circular and iterative process from a feedback view of the world. ................................................................................................................. 209 Figure 21: The solid house of LBR. .............................................................................................. 232 Figure 22: Transactions of an unsecured loan annotated with uncertain values. ............................ 254 Figure 23: Transactions in a bond brought forward as collateral for a loan. .................................. 256 Figure 24: Transactions in a collateralized loan. ........................................................................... 257 x List of Tables and Figures Figure 25: Two commutative diagrams. ........................................................................................ 261 Figure 26: Transactions in a collateralized loan, annotated with default information. ................... 269 Figure 27: Risk model cl', showing the collateralized loan after applying the scenario from Example 15.14. ............................................................................................................ 275 Figure 28: Repo rate rp expressed as an uncertain sequence. ........................................................ 282 Figure 29: Libor rate lbr expressed as an uncertain sequence. ....................................................... 283 Figure 30: Part I of LTCM Trade. ................................................................................................. 283 Figure 31: Part II of LTCM Trade. ................................................................................................ 284 Figure 32: Range of values over time. ........................................................................................... 286 Figure 33: Range of values in the time period from one to eight days. .......................................... 287 Figure 34: Scenario s modeling the default of A, B or C on day two or three. .............................. 288 1 Figure 35: The disassembly of complexity III: The unifying framework. ..................................... 299 Figure 36: The notion of qualitative probability as head of a cluster. ............................................ 301 Abstract Traditional and much of modern risk assessment and management is old fash- ioned, unrealistic and trapped in a dogmatic slumber. It generates its own risks, evoked by an improper notion of risk which lacks a systemic viewpoint. A cul- ture dominates theory (economics and finance) and practice (financial institu- tions) where risk modeling is no longer a functional tool but has become an end in itself. It is high time to put an end to the cult of conventional probabilistic risk modeling which is not able to cope with the kind of low-probability, high-impact events that characterize systemic risk, in particular. In this dissertation, our aim is threefold. Our first result is a negative one: We argue – from a complexity and systems science perspective – that modern financial systems are dynamically and organizationally complex which requires explanatory models for an effective and successful approach to the management of systemic risks. Yet, risk evaluations based on statistical calculations are not sufficiently explanatory. Even worse for the mainstream, this study undermines the citadel of risk assessment and management, arguing that probability theory is not an adequate foundation for modeling systemic and extreme risk (in a banking context). Secondly, we present a kind of risk model on the constructive side which is novel on two accounts. Firstly, in contrast to standard risk modeling approaches used by banks, our proposal focuses on the knowledge dimension (banks’ assets and liabilities are known) rather than the speculation dimension (unknown min- imum or expected losses). Furthermore, in contrast to risk models aimed at regu- lators who analyze systemic risk in order to preserve financial stability, our ob- jective is not to model the financial system and its changes, but market participants’ own positions and their propensity to react to outside changes. Our plea for symbolic and logic-based risk modeling is illustrated with the example of a certain credit crisis (Long-Term Capital Management) which we regard as a systemic risk event in terms of its high rareness and its serious or extreme conse-
Description: