ebook img

Artificial Economics and Self Organization: Agent-Based Approaches to Economics and Social Systems PDF

258 Pages·2014·4.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Artificial Economics and Self Organization: Agent-Based Approaches to Economics and Social Systems

Lecture Notes in Economics and Mathematical Systems 669 Stephan Leitner Friederike Wall Editors Artificial Economics and Self Organization Agent-Based Approaches to Economics and Social Systems Lecture Notes in Economics and Mathematical Systems 669 FoundingEditors: M.Beckmann H.P.Ku¨nzi ManagingEditors: Prof.Dr.G.Fandel FachbereichWirtschaftswissenschaften Fernuniversita¨tHagen Hagen,Germany Prof.Dr.W.Trockel MuratSertelInstituteforAdvancedEconomicResearch IstanbulBilgiUniversity Istanbul,Turkey and Institutfu¨rMathematischeWirtschaftsforschung(IMW) Universita¨tBielefeld Bielefeld,Germany EditorialBoard: H.Dawid,D.Dimitrov,A.Gerber,C-J.Haake,C.Hofmann,T.Pfeiffer, R.Slowin´ski,W.H.M.Zijm Forfurthervolumes: http://www.springer.com/series/300 Stephan Leitner (cid:129) Friederike Wall Editors Artificial Economics and Self Organization Agent-Based Approaches to Economics and Social Systems 123 Editors StephanLeitner FriederikeWall DepartmentforControllingandStrategic Management Alpen-Adria-Universita¨tKlagenfurt Klagenfurt Austria ISSN0075-8442 ISBN978-3-319-00911-7 ISBN978-3-319-00912-4(eBook) DOI10.1007/978-3-319-00912-4 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013946880 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Inthisyear,theArtificialEconomicsconferencereachesits9thanniversary,andthe aimsandtopicsstillattractresearcherstocontributetothissymposium.Since2005, the Artificial Economics conferences bring together researchers from computer science and economics and encourages multi-disciplinary research in economics. Moreover,itappearsthatthisconferenceseriesenfoldsthepotentialofdeveloping agrowingcommunityinthisexitingfieldofresearch. Two features might be regarded as the main building blocks of the Artificial Economics:agent-basedmodelsandtheuseofcomputationaltechniquesto“solve” them. In particular, artificial markets or social systems, artificial networks or artificialorganizationsconsistingofinteracting,heterogeneousagentsaremodeled, computationallyrepresentedandsimulated.Thebehavioroftheartificialsystem– whateveritmightbe–is“observed”overtimeandanalyzedbytheresearcher. A major topic of interest is whether certain regularities show up or certain structures evolve on the macro level of the investigated systems. Hence, this leads to the question of whether or not we can observe the evolution of self- organizing behavior of the systems modeled. Self-organization turns out to have two patterns:on the onehand,thereare self-regulatingprocesseswhich are based on negativefeed-backand which stabilize givenstructures;on the other hand,via positive feed-back self-augmenting processes destabilize structures and, by that, mightleadtonew,innovativestructures.1Thecurrentvolumeoftheseries“Lecture Notes in Economics and Mathematical Systems” collects the papers presented in the 9th edition of the Artificial Economics, held in Klagenfurt am Wo¨rthersee (Austria).Inparticular,thisvolumecontains18selectedpapers.Weareveryhappy that, in addition, one of the keynote speakers, Klaus G. Troitzsch (Universita¨t Koblenz-Landau), found the time summarize his keynote in a paper, which is also included in this volume. The other invited keynote speakers are Andreas Ernst(Universita¨tKassel)andGerhardFriedrich(Universita¨tKlagenfurt).Allthree 1Witt, Ulrich (1997) Self-organization and Economics – What is New? Structural Change and EconomicDynamics8(4):489–507.doi:http://dx.doi.org/10.1016/S0954-349X(97)00022-2. v vi Preface researchers extraordinarilycontributed to the developmentof agent-based models ineconomicsandthesocialsciences,aswellastoitscomputationalfoundations. This volume is divided into six parts. The first part addresses Methodological Issues.MatteoRichiardibridgestheagent-basedmodelingapproach(ofnowadays) with one of its antecedents, i.e. the dynamic microsimulation literature, and elaborates the potential of the latter stream of research for the development in the area of Artificial Economics. In the paper related to his keynote, Klaus G. Troitzschshows–andremindsusof–theimportanceof(i)testingthesignificance ofsimluationresults,and(ii)thinkingaboutthevariancesratherthanmeansofthe results. InthechapterdevotedtoMacroeconomics,firstHuguesBersiniandNicolasvan Zeebroeckinvestigatethefreemarketefficiency/equalitytrade-offbycomparingtwo marketmechanismsusinganagent-basedapproach.Theyfindthateventhoughthey aremoreefficient,thecompetitive(i.e.,doubleauctionbased)mechanismstendto increaseinequality.SusannaCalimaniandPaoloPellizzari modelsocieties where taxevasivebehaviorofthetaxpayersoccurs,andanalyzetheefficiencyofdifferent auditpolicies(ofthetaxagencies)whichdependonthetaxpayerscharacteristics.In theirpaperAndreaTeglio,SilvanoCincotti,EinarJonErlingsson,MarcoRaberto, HlynurStefansson,andJonThorSturlusondealwiththecurrenttopicofrealestate bubbles (as for example observable in the U.S. and in Spain), and investigate the interactionofthelevelofconcentrationoffinancialcapitalontheformationofreal estatebubbles. ThethirdpartofthisvolumecollectsfourpapersrelatedtoMarketDynamics. Chih-HaoLin,Sai-PingLi,andK.Y.Szetoinvestigateaninvestmentstrategybased on adaptive trading for anti-correlated pairs of stocks. Xintong Li, Chao Wang, and Yongui Wang address the evolution of a decentralized market with network externalities. Lucian Daniel Stanciu-Viziteu refines the differentiation between different types of investors (like chartists and fundamentalists). This topic has a remarkable tradition in agent-based models. Stanciu Viziteu distinguishes three types of investorswhich have differentinformationand make differentuse of the information. Wanting Xiong, Han Fu, and Yougui Wang analyze how fair offers emerge in ultimatum games, and show that fairness considerations as well as adaptivelearningareimportantintheemergenceoffairbehavior. In the fourth section of this volume, those papers dealing with Financial Marketsarecomprised.OlivierBrandouyandPhilippeMathieuuseanagentbased model of an artificial stock market in order to analyze the validity of the Volume SynchronizedProbabilityofInformedTrading(VPIN)asameasureforthepotential flowtoxicityinhighfrequencymarkets,andtheviciouscyclethatmightevolvefrom lessinformedmarketmakersreactingtoflowtoxicity.A.Barazzetti,F.Cecconi,and R.Mastronardiintroduceapredictivemachinelearningapproachbasedonfinancial news articles available in the Worldwide Web for event forecasting and trading decisions. In their paper Michael Roos and Anna Klabunde introduce findings on the role of trust of angel investors into startup entrepreneurs using an agent- basedsimulation.Interalia, theyfindthatneitherveryhighnorverylowlevelsof trustseemtobeoptimalfromtheinvestors’perspective.MitjaSteinbacher,Matjaz Preface vii Steinbacher,andMatejSteinbacheraddressaverycurrenttopic.Theyanalyzethe contagionpotentialandstabilityofbankingsystemonarandomizedversionofthe creditcontagionmodelbyexamininganartificialfinancialsystem. The fifth part of this volume investigates with artificial Organizations. Doris A.Behrens,SilviaBerlinger,andFriederikeWallemployanagent-basedapproach in orderto analyze howwell-knownhumandecision-makingbiases (e.g.,framing effects or the recency effect) in interaction with each other influence overall organizationalperformance.Utilizingagent-basedsimulation,StephanLeitnerand Doris A. Behrens challenge a well-known economic mechanism for inducing optimalinvestmentdecisions,i.e.,thecompetitivehurdleratemechanism,bytesting its robustness in situations where forecasting errors occur. Marco LiCalzi and DavideMarchiorishednewlightonan“old”but,nonetheless,up-to-datetopic:the explorationversusexploitationtrade-off.Inparticular,theyrevisiterecentfindings onthemulti-armedbanditprobleminanenvironmentswithhighturbulence. The final section is comprised of three papers related to Networks. Fernando Beltra´nandFarhaanMirza addressthe uptakeoffibre connectionsto households and businesses. They model a high-speed, open access broadband network and investigatemutualnetworkeffectsevolvingfromtheinteractionofbothend-users and service providers. The contribution of Sjoukje A. Osinga, Mark R. Kramer, Gert Jan Hofstede and Adrie J. M. Beulens is a twofold one: On the one hand, the authors investigate the effect of the loss of (market-related) information in a network; on the other hand, the paper provides methodological findings, as it explicitlydealswiththeadvancementofanexistingmodel.Basedonmathematical analysisaswellasagent-basedsimulationsRyotaZamami,HiroshiSato,andAkira Namatameproposeamodelfordesigningnetworkstructures.Inparticular,theyaim atdesigningnetworkstructureswhicharerobustagainstsystemicrisks. KlagenfurtamWo¨rthersee,Austria StephanLeitner May2013 FriederikeWall Acknowledgements Wewouldliketothankthefollowingpersonswhogenerouslydonatedtheirtimeas reviewersandhelpedinvariousstagesoftheproductionofthisvolume: (cid:129) SimoneALFARANO–UniversidadJaumeIdeCastell o´n,Spain (cid:129) Fr e´de´ricAMBLARD–Universite´deToulouse1,France (cid:129) BrunoBEAUFILS–LIFL,Universit e´Lille1,France (cid:129) DorisA.BEHRENS–Alpen-Adria-Universit a¨tKlagenfurt,Austria (cid:129) OlivierBRANDOUY–UniversityofParis1,France (cid:129) DmitriBL U¨SCHKE–Alpen-Adria-Universita¨tKlagenfurt,Austria (cid:129) CharlotteBRUUN–AalborgUniversity,Denmark (cid:129) AndreaCONSIGLIO–Universit a`degliStudidiPalermo,Italy (cid:129) GiorgioFAGIOLO–ScuolaSuperioreSant’Anna,Italy (cid:129) Jos e´ ManuelGALA´N–UniversidaddeBurgos,Spain (cid:129) LynneHAMILL–UniversityofSurrey,UnitedKingdom (cid:129) FlorianHAUSER–Universit a¨tInnsbruck,Austria (cid:129) Ces a´reoHERNA´NDEZ–UniversidaddeValladolid,Spain (cid:129) J¨urgenHUBER–Universita¨tInnsbruck,Austria (cid:129) JeanDanielKANT–UniversityofParis6,France (cid:129) MarcoLICALZI–Universit a`“Ca’Foscari”diVenecia,Italy (cid:129) PhilippeMATHIEU–LIFL,Universit e´Lille1,France (cid:129) MishaelMILAKOVIC–UniversityofBamberg,Germany (cid:129) SjoukjeOSINGA–WageningenUniversity,TheNetherlands (cid:129) JuanPAV O´N–UniversidadComplutensedeMadrid,Spain (cid:129) PaoloPELLIZZARI–Universit a`“Ca’Foscari”diVenecia,Italy (cid:129) MartaPOSADA–UniversidaddeValladolid,Spain (cid:129) MarcoRABERTO–Universit a`diGenova,Italy (cid:129) EnricoSCALAS–Universit a`delPiemonteOrientale,Italy (cid:129) KlausSCHREDELSEKER–Universit a¨tInnsbruck,Austria (cid:129) AndreaTEGLIO–UniversidadJaumeIdeCastell o´n,Spain (cid:129) ElpidaTZAFESTAS–UniversityofAthens,Greece (cid:129) TimVERWAART–WageningenUniversity,TheNetherlands (cid:129) MuratYILDIZOGLU–Univ.MontesquieuBordeauxIV,France ix

Description:
This volume presents recent advances in the dynamic field of Artificial Economics and its various applications. Artificial Economics provides a structured approach to model and investigate economic and social systems. In particular, this approach is based on the use of agent-based simulations and fu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.