Artifact Analysis and Removal of Electroencephalographic (EEG) Recordings YiDou AThesis in TheDepartment of ConcordiaInstituteforInformationSystemsEngineering PresentedinPartialFulfillmentoftheRequirements fortheDegreeof MasterofAppliedScience(QualitySystemEngineering)at ConcordiaUniversity Montre´al,Que´bec,Canada March2017 (cid:13)c YiDou,2017 CONCORDIA UNIVERSITY School of Graduate Studies Thisistocertifythatthethesisprepared By: YiDou Entitled: Artifact Analysis and Removal of Electroencephalographic (EEG)Recordings andsubmittedinpartialfulfillmentoftherequirementsforthedegreeof MasterofAppliedScience(QualitySystemEngineering) complies with the regulations of this University and meets the accepted standards with re- specttooriginalityandquality. SignedbytheFinalExaminingCommittee: Chair Dr. JiaYuanYu ExternalExaminer Dr. ZhiChen(BCEE) Examiner Dr. JiaYuanYu Supervisor Dr. YongZeng Co-supervisor Dr. Wei-PingZhu(ECE) Approvedby RachidaDssouli,Chair Department of Concordia Institute for Information Systems Engineering 2017 AmirAsif,Dean FacultyofEngineeringandComputerScience Abstract Artifact Analysis and Removal of Electroencephalographic (EEG) Recordings YiDou Electroencephalography (EEG) technique has been widely used in continuous mon- itoring the brain activities in academic research and clinical applications. In cognitive neuroscience research, the electrical brain signals can be used to measure mental effort of subjects. However, the presence of artifacts is a constant problem when recording brain activities, which will obscure the underlying neural dynamics and therefore make it diffi- cult to interpret EEG signals accurately. These unwanted signals or artifacts have different effects depending on their sources of generation. Among them, the motion of the subject is one of the major contributors to physiological artifacts that causes most of the contam- inations to the underlying brain activities. It is quite challenging to correct the myogenic activity from EEG background potentials due to its wide spectral distribution overlapped withtypicalbandsofbrainwavesrelatedtocognitiveactivities,andthespatialdistribution over the entire scalp of human. As such, this thesis focuses on the analysis and removal of motionartifactsfromEEGsignals. The preliminary investigations include the movement-triggered artifact identification and the analysis of the characteristics of the motion artifact. According to the recorded video, the contaminated epochs are extracted from the original EEG signals. A set of fea- tures of the movement-triggered artifacts are proposed based on power spectral density and wavelet transform. Statistical analysis is performed to distinguish the segments that iv contain motions. Two typical methods of artifact removal are then studied, and the effi- ciency to correct this type of artifact is validated by comparing the extracted features of non-movement segments and the contaminated segments. The result shows that the tested artifact removal methods cannot completely remove movement artifacts, which also infers thepotentialrelationbetweenmotionandmentalactivities. v Acknowledgments Firstandforemost,Iwouldliketoexpressmyprofoundappreciationtomysupervisors Dr. Yong Zeng and Dr. Wei-Ping Zhu, for their constant guidance and support throughout the course of my graduate study and research. It would not be possible to complete this thesiswithouttheirinsightfuladviceandinspiration. Itisagreatfortunetohavetheoppor- tunitytoworkwithtwosuchoutstandingprofessors. Iamimpressedandmotivatedbytheir enthusiasmfortheresearch,andIbenefitedgreatlyfromtheirknowledgeandwisdom. I would also like to thank all my colleagues in the Design Lab. It is very fortunate to beinthisfriendlyresearchenvironmentandcollaboratewithallthepastandpresentgroup members. Special thanks to Dr. Thanh An Nguyen, for her help and valuable advice in EEG research. I gratefully acknowledge all the friends that made my time at Concordia enjoyable. Last but not the least, I would like to thank my beloved parents, for providing me with thecontinuousencouragementandunconditionalloveinmylife. Thankyou. vi Contents ListofFigures ix ListofTables xi 1 Introduction 1 1.1 BackgroundandMotivation . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Thesisorganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 BackgroundMaterial 6 2.1 Electroencephalography(EEG) . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Lobesofthebrain . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Brainwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Event-relatedpotentials(ERPs) . . . . . . . . . . . . . . . . . . . 10 2.2 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Typicalartifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Movement-triggeredartifact . . . . . . . . . . . . . . . . . . . . . 16 3 SignalCollectionandExperimentalSetup 18 3.1 Selectionofparticipants . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 vii 3.2 EEGsignalrecording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Movementrecording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Experimentprocedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Datapre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Movement-triggeredArtifactAnalysis 26 4.1 EEGdatasegmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Featureextractioninartifactanalysis . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Powerspectralanalysis . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 Waveletanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 ResultsusingrelativeBeta2power . . . . . . . . . . . . . . . . . . 40 4.3.2 Resultsusingwaveletentropy . . . . . . . . . . . . . . . . . . . . 46 5 ArtifactRemoval 49 5.1 Canonicalcorrelationanalysis(CCA) . . . . . . . . . . . . . . . . . . . . 50 5.2 Independentcomponentanalysis(ICA) . . . . . . . . . . . . . . . . . . . 54 5.3 Expermentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.1 CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6 ConclusionandFutureWork 69 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Bibliography 73 viii List of Figures Figure 2.1 EEG signals from an adult with twenty-one electrodes at various sitesonthebrainscalp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure2.2 Brainlobes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure3.1 64-Chstandardelectrodelayout. . . . . . . . . . . . . . . . . . . . 20 Figure3.2 Videorecordingfromtheexperiment. . . . . . . . . . . . . . . . . 22 Figure3.3 Thelocationofthreewebcameras. . . . . . . . . . . . . . . . . . . 23 Figure3.4 Fourstagesoftheexperiment. . . . . . . . . . . . . . . . . . . . . 23 Figure4.1 Theoverviewofmovement-triggeredartifactanalysis. . . . . . . . . 27 Figure4.2 SegmentationprocessandrelationbetweenvideoandEEG. . . . . . 28 Figure4.3 Threetypesofsegmentsinthetimedomain. . . . . . . . . . . . . . 31 Figure4.4 Powerspectraldensity(PSD)ofonesubjectinaspecificmovement. 35 Figure4.5 EEGsignaldecompositionbasedonDWT. . . . . . . . . . . . . . . 38 Figure4.6 Agraphicaluserinterface(GUI)fordataanalysis. . . . . . . . . . . 41 Figure4.7 AnexampleofPSDingraphicaluserinterface(GUI). . . . . . . . . 42 Figure 4.8 Comparison of means (a) and variances (b) of relative Beta2 power foreachchannel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure4.9 StatisticalanalysisofrelativeBeta2powerforallchannels. . . . . . 44 Figure4.10 Statisticalanalysisofspectraledgefrequency(SEF)forallchannels intestperiod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure4.11 GrandmeanofrelativeBeta2powerinfourtypesofmovements. . . 47 ix Figure 4.12 Comparison of means (a) and variances (b) of wavelet entropy for threetypesofsegments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure4.13 Statisticalanalysisofrelativewaveletentropy(RWE)forallchannels. 48 Figure5.1 Generalframeworkofsignalcombination. . . . . . . . . . . . . . . 50 Figure5.2 Experimentalprocedureofmovement-triggeredartifactremoval. . . 51 Figure 5.3 Comparison of means (a) and variances (b) of relative Beta2 power foreachchannelafterapplyingCCA. . . . . . . . . . . . . . . . . . . . . 58 Figure 5.4 Statistical analysis of relative Beta2 power for all channels after applyingCCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure5.5 Statisticalanalysisofspectraledgefrequency(SEF)forallchannels inreconstructedperiodafterapplyingCCA. . . . . . . . . . . . . . . . . . 60 Figure 5.6 Comparison of means (a) and variances (b) of wavelet entropy for eachchannelafterapplyingCCA. . . . . . . . . . . . . . . . . . . . . . . 61 Figure 5.7 Statistical analysis of relative wavelet entropy (RWE) for all chan- nelsafterapplyingCCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 5.8 Comparison of means (a) and variances (b) of relative Beta2 power foreachchannelafterapplyingICA. . . . . . . . . . . . . . . . . . . . . . 63 Figure 5.9 Statistical analysis of relative Beta2 power for all channels after applyingICA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Figure5.10 Statisticalanalysisofspectraledgefrequency(SEF)forallchannels incontextperiod(a)andtestperiod(b)afterapplyingICA. . . . . . . . . . 65 Figure 5.11 Comparison of means (a) and variances (b) of wavelet entropy for eachchannelafterapplyingICA. . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 5.12 Statistical analysis of relative wavelet entropy (RWE) for all chan- nelsafterapplyingICA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 x
Description: