ebook img

Arthur's Invariant Trace Formula and Comparison of Inner Forms PDF

573 Pages·2016·7.01 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arthur's Invariant Trace Formula and Comparison of Inner Forms

Yuval Z. Flicker Arthur’s Invariant Trace Formula and Comparison of Inner Forms Yuval Z. Flicker Arthur’s Invariant Trace Formula and Comparison of Inner Forms YuvalZ.Flicker ArielUniversity Ariel,Israel TheOhioStateUniversity Columbus,Ohio,USA ISBN978-3-319-31591-1 ISBN978-3-319-31593-5 (eBook) DOI10.1007/978-3-319-31593-5 LibraryofCongressControlNumber:2016940094 MathematicsSubjectClassification(2010):11F70,11F72,11F41,11M36,22E55,22E57 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisbookispublishedunderthetradenameBirkhäuser,www.birkhauser-science.com TheregisteredcompanyisSpringerInternationalPublishingAG,CH Preface The theory of automorphic representations of the group G.A/ of the adèle points of a reductive connected group G over a global field F, and that of admissible representations of the group G.Fv/ of points of a reductive connected group G over a local field Fv, are governed by a hypothetical reciprocity law, introduced byLanglands,thatrelatesthemto representationsof avariantoftheGaloisgroup of the base field, namedWeil or Weil-Deligne group,into the complexLanglands dualgroupLGofG. This “principle of functoriality”—not touched upon in the present tome— suggests relations between such automorphic and admissible representations of different groups G. These relations have been termed liftings, correspondences, transfers,andaresuggestedbyrelationsamongsttheunderlyingdualgroups. For example, establishing lifting from GL.2/ to GL.n C 1/ corresponding to the irreducible n-dimensional representation Symn from the dual group GL.2;C/ toGL.nC1;C/wouldimplytheRamanujanconjectureforGL.2/.Someofthese liftings,which are analyticimplicationsof the principle,have beenestablished by various techniques, using various invariants of the representations. The work of Jacquet-Langlands[JL70]showedthattheSelbergtraceformula[Se62]couldgive very complete results on the correspondence of representations of GL.2/ and its innerforms,themultiplicativegroupsofquaternionalgebras. Deligne and Kazhdan [DK] then introduced a simple form of the trace for- mula, which applies to test functions—and representations—with two cuspidal components (“two” was reduced later to “one” in a form of the simple trace formuladevelopedby Flicker and Kazhdan [FK88]), and established in [DKV84] the correspondence of representations between GL.n/ and its inner forms, the multiplicativegroupsofsimplealgebras. This work played the global trace formula against local analysis and used multipleinductionargumentstoprovenotonlytheliftingofrepresentationsbutalso theexistenceofmatchingorbitalintegrals.Thelatterwaspreviouslyconsideredto beaprerequisiteforderivingliftingapplicationsfromthetraceformula. To remove this last constraint, and of course for other applications, Arthur developed the trace formula for a general test function, in a series of papers, v vi Preface over many years. In particular, Arthur put the trace formula in invariant form, namely, expressed all terms that appear in the formula as invariant distributions. Thisis necessaryforcomparisonapplications,aswhencomparingrepresentations of different groups, only characters or orbital integrals can be related, and this is through a norm map relating conjugacyclasses of elements in the two groups. In crudeterms, onlyeigenvaluesofelementscan be relatedbetweentwo groups,not individualelements. The presentvolumegrew outof an attemptto study Arthur’swork. We started inacoursefollowingArthur’sexpositorynotes[Ar05],butquicklyrealizedthatto attemptto understandthe theorywe had to study the source articles. To make the subject more accessible, we decided to unite the main articles in one volume and rewritethemasoneunitina conventionalway.Thuswe cutmanyargumentsinto lemmas, propositions, and theorems, stated the claims before giving their proofs, uniformizedthenotationtomakeiteasiertoread(e.g.,(cid:2) onGbut(cid:3) onM),andthe like. Thus, in Chapter 3, we explain Arthur’s proof of the basic, noninvarianttrace formula,followinghisearlyDukeandCompositiopapers. InChapter4,weexplainArthur’sAnnalsandJ.Funct.Anal.papers[Ar81]and [Ar89], whichstudy the noninvarianceof the termsin the basic trace formulaand preparetheingredientsforsettinguptheinvariantformula. In Chapter 5, we explain Arthur’s JAMS papers [Ar88.2, Ar88.3], where the invariant formula is finally developed. We quote some of Arthur’s computations ofcontributionstothecontinuousspectrumfromAmer.J.Math.,[Ar82.I,Ar82.II], andofweightedorbitalintegralsfromDuke[Ar88.1]and[Ar85,Ar86],wherewe feltwecouldnotimprovetheexpositionsufficientlytojustifytheincreasedvolume. Thus Chapters 3–5 here give an almost complete attempt to develop the invariant traceformulainaformfitforapplications. Toillustratetheuseofthistraceformula,inChapter6,wecomparetheinvariant traceformulaeforG0 D GL.n/anditsinnerformG,formatchingfunctionsf0 on G0.A/andf onG.A/,thusfunctionswithmatchingorbitalintegrals.Thisisalready containedin[AC89,Chapter2],asthesecondarycase,accompanyingthemaincase ofinterestthere:basechangeforGL.n/.Thismarriagemakesithardtofollowthe innerformscase,sowedecidedtowriteitseparatelyinourChapter6.Thisisafter all the initial case of comparison; in principle it should be the simplest, and we thoughtconsequentlythatitdeserveditsownfulltreatment. Thecomparisonofthetwotraceformulaeisfarfrombeingsimple.Akeyargu- ment is a multiple induction process, reminiscent of Kazhdan’s double induction argumentusingthesimpletraceformula. Equipped with the comparison from Chapter 6, we set in Chapter 2 to prove the correspondencebetween GL.n/ andits innerformsin general.This chapteris basedonourcourse[F87.1]atHarvard1986,whereadifferentproofoftheresults of [DKV84] was given, based on using the then recent works [BDK86] on the trace Paley-Wiener theorem of Bernstein, Deligne, and Kazhdan, and on cuspidal geometry[Ka86.1]byKazhdan. Preface vii The first section of Chapter 2 deals with the comparison of GL.n/ and the anisotropic inner forms, multiplicative groups of a division algebra, following [F90.2], using the simple trace formula.This is the only“easy” case, so we bring it first. It was once considered difficult too, but [F90.2] observed that a finiteness resultknownat the time permitteda relativelyeasy proof.Thisfinitenessresultis nowknownforallinnerformsofGL.n/,butisnotneededintheproofofthegeneral case. The second section of Chapter 2 discusses the asymptotic behavior of orbital integrals, following Shalika [Shal72], who used ideas of Harish-Chandra[HC70]. Aningredienthereistheconvergenceoftheorbitalintegralsontheunipotentorbits in G. There is a publication of Rao [Ra72] on this, and we sketch, toward the end of this Section 2, a proof of Deligne of this fact. This section ends with an elegantcomputationofKottwitz[Ko88]oftheorbitalintegraloftheEuler-Poincaré functionheintroduced,whichgivesexplicitlyapseudo-coefficientoftheSteinberg representation. In Section 24, we extend the correspondence from the non-degenerate case of square-integrable, tempered, standard, or relevant local representations—what followsonusingpurelythesimpletraceformulainSection13,toacorrespondence of local unitarizable representations from GL.n/ to its inner forms, by purely local arguments of the type of [BZ76, BZ77, Ze80, Tc90], and the Langlands classification[BW80],followingBadulescu[Ba08]. Section 25 uses the comparison of the invariant trace formulae of Chapter 6 to establish the full global correspondence, for cuspidal representations without any local constraint and also for residual representations, permitting to transfer multiplicityoneandrigiditytheoremsfromtheknowncaseofthesplitgroupGL.n/ tothatoftheinnerforms,wherenoglobalrepresentationisgeneric;thusthetheory of Whittaker modelsis notavailable, as well as establishing for the inner formsa descriptionoftheresidualspectrum,analogoustothatestablishedbyMoeglinand Waldspurger[MW89]forGL.n/. WepostponetothefinalSection26ofChapter2anaccountofthesimpletrace formula of Flicker and Kazhdan [FK88] that uses one cuspidal component and a secondcomponentregular—thatleadstonoconstraintsonliftingapplications.The ideaofregularfunctionswasinspiredbyDeligne’sconjectureonthevalidityofthe Lefschetzfixedpointformulafora correspondenceonavarietyoverafinitefield, provideditissufficientlytwistedbytheFrobenius;see[F13,Fu97,Va07]. Chapter 2 was used for a course at Ohio State in 2014. Chapter 1 contains a statement of the results of Chapter 2 on the correspondence between GL.n/ and its inner forms, as well as a summary of the statement of Arthur’s invarianttrace formula. Since the statement is so involved, it is not surprising that the proof and the development of the trace formula are so long. We hope this work would make Arthur’s work more accessible. We note, however, that it, and in fact the entire theory of automorphicrepresentations,is based on the theory of Eisenstein series,ofLanglands[La66,La76];seealso[Ar79],bestexplainedbyMoeglinand Waldspurger[MW95],thatremainsafundamentalchallenge. viii Preface This work was partially supported by grants from the Simons Foundation (#267097 and #317731 to Yuval Z. Flicker), as well as the Humboldt-Stiftung, TÜBITAK, and ERC AdG Grant 247049, while the author was a Schonbrunn professor at the Hebrew University. The author enjoyed discussions with and hospitalityofElmarGroße-KlönneatHUBerlin,DavidKazhdanatHUJerusalem, Takayuki Oda at Tokyo U., Eric Opdam at Amsterdam, and Engin Özkan at Erzincan,duringthe preparationof thisvolume.Thisworkgreatlybenefitedfrom thecollaborationofMichaelBelfantiatOhioStatewhoattendedthecourses,took notes,improvedtheexposition,andwasinvitedtocoauthorthisbook,butdeclined. The envisaged readership of this book consists of graduate students and researchersinterestedinthetraceformulaanditsapplications,especiallytolifting problems.We hopeit wouldsimplify—infactmakeit possiblefor suchpeopleto enterthissubject. Ariel,Israel YuvalZ.Flicker Contents Preface............................................................................. v 1 Introduction .................................................................. 1 1 Motivation................................................................ 1 2 CorrespondenceBetweenGL.n/andItsInnerForms................. 4 3 Arthur’sInvariantTraceFormula....................................... 10 2 LocalTheory ................................................................. 25 1 CaseofDivisionAlgebras............................................... 25 2 OrbitalIntegrals.......................................................... 32 3 AutomorphicForms ..................................................... 55 4 TraceFormula............................................................ 58 5 Density ................................................................... 61 6 Characters................................................................ 66 7 Coinvariants.............................................................. 71 8 TraceFunctions.......................................................... 73 9 Stability .................................................................. 79 10 DiscreteSeries........................................................... 81 11 Decay..................................................................... 82 12 Finiteness................................................................. 84 13 SimpleAlgebras ......................................................... 85 14 Germs .................................................................... 90 15 Comparison .............................................................. 91 16 Existence................................................................. 92 17 Isolation.................................................................. 94 18 Correspondence.......................................................... 96 19 Tempered................................................................. 98 20 Irreducibility............................................................. 101 21 Unitarity.................................................................. 103 22 Induction................................................................. 105 23 CuspidalGlobalCorrespondence....................................... 107 24 ComplementsonLocalRepresentations................................ 108 ix x Contents 25 CompleteGlobalCorrespondence...................................... 116 26 OneCuspidalPlace...................................................... 126 3 Arthur’sNoninvariantTraceFormula .................................... 139 1 PreliminaryDefinitions.................................................. 139 2 TheKernelK .x;y/...................................................... 145 P 3 AReviewofEisensteinSeries .......................................... 150 4 TheSecondFormulafortheKernel .................................... 156 5 TheModifiedKernelIdentity........................................... 163 6 SomeGeometricLemmas............................................... 166 7 IntegrabilityofkT.x;f/.................................................. 171 o 8 WeightedOrbitalIntegrals .............................................. 177 9 ATruncationOperator................................................... 183 10 IntegrabilityofkT.x;f/.................................................. 191 (cid:4) 11 TheOperatorMPT.(cid:3)/(cid:4).................................................... 201 12 EvaluationinaSpecialCase ............................................ 206 13 Conclusion............................................................... 213 4 StudyofNoninvariance ..................................................... 215 1 Notation.................................................................. 215 2 AReviewoftheTraceFormula......................................... 220 3 TheDistributionsJoandJ(cid:4) ............................................. 223 4 Noninvariance............................................................ 231 5 IntertwiningOperators................................................... 238 6 Normalization............................................................ 240 7 RealGroups.............................................................. 244 8 p-AdicGroups ........................................................... 251 9 StandardRepresentations................................................ 253 10 ConvexSetsandSomeRelatedFunctions.............................. 257 11 SomeExamples.......................................................... 265 12 TheDistributionsJM.(cid:3)(cid:5)/................................................ 273 13 TheDistributionsJM;(cid:6) andJM;(cid:2)......................................... 277 14 HeckeInvariance......................................................... 285 15 TheDistributionsJ .(cid:3);X/ .............................................. 288 M 16 Residues.................................................................. 292 17 ProofofProposition17.3................................................ 298 18 ChangesofContour...................................................... 304 19 TheSpacesH .G.F //andI .G.F // ................................ 307 ac S ac S 20 TheMap(cid:7) .............................................................. 311 M 5 TheInvariantTraceFormula............................................... 317 1 InvariantHarmonicAnalysis............................................ 321 2 TheInvariantDistributionsI .(cid:6)/....................................... 325 M 3 TheInvariantDistributionsI .(cid:3);X/.................................... 334 M 4 SomeFurtherMapsandDistributions.................................. 338 5 AContourIntegral....................................................... 347

Description:
This monograph provides an accessible and comprehensive introduction to James Arthur’s invariant trace formula, a crucial tool in the theory of automorphic representations. It synthesizes two decades of Arthur’s research and writing into one volume, treating a highly detailed and often difficult
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.