ARMA Autocorrelation Functions • For a moving average process, MA(q): x = w + θ w + θ w + · · · + θ w . t t 1 t−1 2 t−2 q t−q • So (with θ = 1) 0 (cid:16) (cid:17) γ(h) = cov x , x t+h t q q (cid:88) (cid:88) = E θ w θ w j t+h−j k t−k j=0 k=0 q−h 2 (cid:88) σ θ θ , 0 ≤ h ≤ q w j j+h = j=0 0 h > q. 1 • So the ACF is q−h (cid:88) θ θ j j+h j=0 , 0 ≤ h ≤ q q ρ(h) = (cid:88) 2 θ j j=0 0 h > q. • Notes: – In these expressions, θ = 1 for convenience. 0 – γ(q) (cid:54)= 0 but γ(h) = 0 for h > q. This characterizes MA(q). 2 • For an autoregressive process, AR(p): x = φ x + φ x + · · · + φ x + w . t 1 t−1 2 t−2 p t−p t • So (cid:16) (cid:17) γ(h) = cov x , x t+h t p (cid:88) = E φ x + w x j t+h−j t+h t j=1 p (cid:88) (cid:16) (cid:17) = φ γ(h − j) + cov w , x . j t+h t j=1 3 • Because x is causal, x is w + a linear combination of w , w , . . . . t t t t−1 t−2 • So 2 (cid:16) (cid:17) σ h = 0 w cov w , x = t+h t 0 h > 0. • Hence p (cid:88) γ(h) = φ γ(h − j), h > 0 j j=1 and p (cid:88) 2 γ(0) = φ γ(−j) + σ . j w j=1 4 2 • If we know the parameters φ , φ , . . . , φ and σ , these equa- 1 2 p w tions for h = 0 and h = 1, 2, . . . , p form p + 1 linear equations in the p + 1 unknowns γ(0), γ(1), . . . , γ(p). • The other autocovariances can then be found recursively from the equation for h > p. • Alternatively, if we know (or have estimated) γ(0), γ(1), . . . , γ(p), they form p + 1 linear equations in the p + 1 parameters 2 φ , φ , . . . , φ and σ . 1 2 p w • These are the Yule-Walker equations. 5 • For the ARMA(p, q) model with p > 0 and q > 0: x =φ x + φ x + · · · + φ x t 1 t−1 2 t−2 p t−p + w + θ w + θ w + · · · + θ w , t 1 t−1 2 t−2 q t−q a generalized set of Yule-Walker equations must be used. • The moving average models ARMA(0, q) = MA(q) are the only ones with a closed form expression for γ(h). • For AR(p) and ARMA(p, q) with p > 0, the recursive equation means that for h > max(p, q + 1), γ(h) is a sum of geomet- rically decaying terms, possibly damped oscillations. 6 • The recursive equation is p (cid:88) γ(h) = φ γ(h − j), h > q. j j=1 • What kinds of sequences satisfy an equation like this? −h – Try γ(h) = z for some constant z. – The equation becomes p p −h (cid:88) −(h−j) −h (cid:88) j −h 0 = z − φ z = z 1 − φ z = z φ(z). j j j=1 j=1 7 −h • So if φ(z) = 0, then γ(h) = z satisfies the equation. • Since φ(z) is a polynomial of degree p, there are p solutions, say z , z , . . . , z . 1 2 p • So a more general solution is p (cid:88) −h γ(h) = c z , l l l=1 for any constants c , c , . . . , c . 1 2 p • If z , z , . . . , z are distinct, this is the most general solution; 1 2 p if some roots are repeated, the general form is a little more complicated. 8 • If all z , z , . . . , z are real, this is a sum of geometrically 1 2 p decaying terms. • If any root is complex, its complex conjugate must also be a root, and these two terms may be combined into geometri- cally decaying sine-cosine terms. • The constants c , c , . . . , c are determined by initial condi- 1 2 p tions; in the ARMA case, these are the Yule-Walker equa- tions. • Note that the various rates of decay are the zeros of φ(z), the autoregressive operator, and do not depend on θ(z), the moving average operator. 9 • Example: ARMA(1, 1) x = φx + θw + w . t t−1 t−1 t • The recursion is γ(h) = φγ(h − 1), h = 2, 3, . . . h • So γ(h) = cφ for h = 1, 2, . . . , but c (cid:54)= 1. • Graphically, the ACF decays geometrically, but with a differ- ent value at h = 0. 10
Description: