Advanced Courses in Mathematics CRM Barcelona Gebhard Böckle David Burns David Goss Dinesh Thakur Fabien Trihan Douglas Ulmer Arithmetic Geometry over Global Function Fields Advanced Courses in Mathematics CRM Barcelona Centre de Recerca Matemàtica Managing Editor: Carles Casacuberta More information about this series at http://www.springer.com/series/5038 Gebhard Böckle • David Burns • David Goss Dinesh Thakur • Fabien Trihan • Douglas Ulmer Arithmetic Geometry over Global Function Fields Editors for this volume: Francesc Bars (Universitat Autònoma de Barcelona) Ignazio Longhi (Xi’an Jiaotong-Liverpool University) Fabien Trihan (Sophia University, Tokyo) Gebhard Böckle David Burns Interdisciplinary Center for Scientific Computing Department of Mathematics Universität Heidelberg King’s College London Heidelberg, Germany London, UK David Goss Dinesh Thakur Department of Mathematics Department of Mathematics The Ohio State University University of Rochester Columbus, OH, USA Rochester, NY, USA Fabien Trihan Douglas Ulmer Department of Information School of Mathematics and Communication Sciences Georgia Institute of Technology Sophia University Atlanta, GA, USA Tokyo, Japan ISSN 2297-0304 ISSN 2297-0312 (electronic) ISBN 978-3-0348-0852-1 ISBN 978-3-0348-0853-8 (eBook) DOI 10.1007/978-3-0348-0853-8 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2014955449 Mathematics Subject Classification (2010): Primary: 11R58; Secondary: 11B65, 11G05, 11G09, 11G10, 11G40, 11J93, 11R23, 11R65, 11R70, 14F05, 14F43, 14G10, 33E50 © Springer Basel 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer Basel is part of Springer Science+Business Media (www.birkhauser-science.com) Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Cohomological Theory of Crystals over Function Fields and Applications Gebhard B¨ockle Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 First Basic Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1 τ-sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 (Algebraic) Drinfeld A-modules . . . . . . . . . . . . . . . . . . . 11 1.3 A-motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 A-crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Motivation II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Localization for abelian categories. . . . . . . . . . . . . . . . . . 20 2.4 Nilpotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 A-crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Functors on τ-sheaves and A-crystals . . . . . . . . . . . . . . . . . . . 25 3.1 Inverse image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Further functors deduced from functors on quasi-coherent sheaves . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Extension by zero . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Derived Categories and Derived Functors . . . . . . . . . . . . . . . . . 33 5 Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1 Basics on flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 Flatness under functors . . . . . . . . . . . . . . . . . . . . . . . 38 5.3 Representability of flat crystals . . . . . . . . . . . . . . . . . . . 39 v vi Contents 6 The L-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1 Naive L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2 Crystalline L-functions . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3 Trace formulas for L-functions. . . . . . . . . . . . . . . . . . . . 44 7 Proof of Anderson’s Trace Formula and a Cohomological Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1 The Cartier operator . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2 Cartier sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.3 Operators of trace class . . . . . . . . . . . . . . . . . . . . . . . 50 7.4 Anderson’s trace formula . . . . . . . . . . . . . . . . . . . . . . . 51 7.5 Proof of Theorem 6.13 . . . . . . . . . . . . . . . . . . . . . . . . 53 7.6 The crystalline trace formula for general (good) rings A . . . . . 54 8 Global L-functions for A-motives . . . . . . . . . . . . . . . . . . . . . . 57 8.1 Exponentiation of ideals . . . . . . . . . . . . . . . . . . . . . . . 58 8.2 Definition and basic properties of the global L-function . . . . . . 60 8.3 Global L-functions at negative integers . . . . . . . . . . . . . . . 62 8.4 Meromorphy and entireness . . . . . . . . . . . . . . . . . . . . . 63 8.5 The global Carlitz–Goss L-function of the affine line . . . . . . . 64 9 Relation to E´tale Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 73 9.1 An equivalence of categories . . . . . . . . . . . . . . . . . . . . . 73 9.2 A result of Goss and Sinnott. . . . . . . . . . . . . . . . . . . . . 77 10 Drinfeld Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10.1 A moduli space for Drinfeld modules . . . . . . . . . . . . . . . . 86 10.2 An explicit example . . . . . . . . . . . . . . . . . . . . . . . . . 87 10.3 Drinfeld modular forms via cohomology . . . . . . . . . . . . . . 91 10.4 Galois representations associated to Drinfeld modular forms . . . 96 10.5 Ramification of Galois representations associated to Drinfeld modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10.6 Drinfeld modular forms and Hecke characters . . . . . . . . . . . 100 10.7 An extended example. . . . . . . . . . . . . . . . . . . . . . . . . 102 Appendix: Further Results on Drinfeld Modules . . . . . . . . . . . . . . . 108 A.1 Drinfeld A-modules over C∞ . . . . . . . . . . . . . . . . . . . . 108 A.2 Torsion points and isogenies of Drinfeld modules . . . . . . . . . 110 A.3 Drinfeld–Hayes modules . . . . . . . . . . . . . . . . . . . . . . . 111 A.4 Torsion points of Drinfeld–Hayes modules . . . . . . . . . . . . . 114 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Contents vii On Geometric Iwasawa Theory and Special Values of Zeta Functions David Burns and Fabien Trihan with an appendix by Francesc Bars Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 1.1 Relative algebraic K-theory and Iwasawa algebras . . . . . . . . 123 1.2 Pro-coverings,pro-sheavesand perfect complexes . . . . . . . . . 126 2 Higher direct images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 3.1 Finite generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 3.2 The Hochschild–Serre exact triangle . . . . . . . . . . . . . . . . 129 3.3 An important reduction step. . . . . . . . . . . . . . . . . . . . . 131 3.4 The abelian case . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.5 Strategy of Burns and Kato . . . . . . . . . . . . . . . . . . . . . 133 3.6 Application to Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . 134 3.7 Proof of Theorem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . 136 4 Semistable abelian varieties over unramified extensions . . . . . . . . . 137 4.1 Hypotheses and notations . . . . . . . . . . . . . . . . . . . . . . 137 4.2 Statement of the main results . . . . . . . . . . . . . . . . . . . . 138 5 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.1 The complexes N and S . . . . . . . . . . . . . . . . . . . . . . 141 0 0 5.2 Extending to the complexes S∞ and N∞ . . . . . . . . . . . . . . 143 5.3 The complex N . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ar 5.4 The complex N∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.5 Main Conjecture for A over K∞ . . . . . . . . . . . . . . . . . . . 146 6 Constant ordinary abelian varieties over abelian extensions . . . . . . . 147 6.1 The p-adic L-function of A/L . . . . . . . . . . . . . . . . . . . . 148 6.2 The interpolation formula . . . . . . . . . . . . . . . . . . . . . . 149 6.3 Main Conjecture for A over L . . . . . . . . . . . . . . . . . . . . 150 7 Proof of Theorem 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.1 Frobenius-Verschiebung decomposition . . . . . . . . . . . . . . . 151 7.2 Selmer modules and class groups . . . . . . . . . . . . . . . . . . 152 7.3 Functional equations . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.4 Completion of the proof . . . . . . . . . . . . . . . . . . . . . . . 155 viii Contents 8 Explicit consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.1 Weil-´etale cohomology . . . . . . . . . . . . . . . . . . . . . . . . 156 8.2 Leading term formulas for affine curves . . . . . . . . . . . . . . . 158 9 Proofs of Theorem 8.1 and Corollary 8.2 . . . . . . . . . . . . . . . . . . 161 10 Fitting invariants and annihilation results . . . . . . . . . . . . . . . . . 165 Appendix: On Non-Noetherian Iwasawa Theory A.1 The general setting . . . . . . . . . . . . . . . . . . . . . . . . . . 170 A.2 Divisor class groups. . . . . . . . . . . . . . . . . . . . . . . . . . 171 A.2.1 General observations . . . . . . . . . . . . . . . . . . . . . 171 A.2.2 Pro-characteristicideals . . . . . . . . . . . . . . . . . . . 172 A.2.3 The main conjecture . . . . . . . . . . . . . . . . . . . . . 172 A.3 Selmer groups in the p-cyclotomic extension . . . . . . . . . . . . 173 A.3.1 Pro-Fitting ideals . . . . . . . . . . . . . . . . . . . . . . . 173 A.3.2 Pro-characteristicideals . . . . . . . . . . . . . . . . . . . 174 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 The Ongoing Binomial Revolution David Goss Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 1 Early history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 2 Newton, Euler, Abel, and Gauss . . . . . . . . . . . . . . . . . . . . . . 186 3 The pth power mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 4 The Theorem of Lucas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5 The Theorem of Mahler . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6 Measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7 The group S(p) and binomial symmetries in finite characteristic . . . . 191 8 The future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Contents ix Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields Dinesh S. Thakur Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 1 Gamma: Definitions, Properties and Functional Equations . . . . . . . . 201 1.1 Arithmetic gamma for F [t]: Definitions and analogies . . . . . . 201 q 1.2 Arithmetic gamma for sF [t]: Interpolations . . . . . . . . . . . . 204 q 1.3 Arithmetic gamma for general A: Definitions and interpolations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 1.4 Functional equations for arithmetic gamma . . . . . . . . . . . . 206 1.5 Geometric gamma: Definitions and interpolations . . . . . . . . . 208 1.6 Functional equations for geometric gamma . . . . . . . . . . . . . 209 2 Special Γ-values, Relations with Drinfeld Modules and Uniform Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2.1 Arithmetic gamma: F [t] case . . . . . . . . . . . . . . . . . . . . 211 q 2.2 Arithmetic gamma: General A case . . . . . . . . . . . . . . . . . 213 2.3 Special values of arithmetic Γ . . . . . . . . . . . . . . . . . . . 213 v 2.4 Geometric gamma values . . . . . . . . . . . . . . . . . . . . . . . 215 2.5 Uniform framework . . . . . . . . . . . . . . . . . . . . . . . . . . 217 3 Solitons, t-motives and Complete Gamma Relations for Fq[t] . . . . . . 221 3.1 Anderson’s solitons: General overview . . . . . . . . . . . . . . . 221 3.2 t-modules, t-motives and dual t-motives . . . . . . . . . . . . . . 223 3.3 Period recipe and examples . . . . . . . . . . . . . . . . . . . . . 225 3.4 Explicit construction . . . . . . . . . . . . . . . . . . . . . . . . . 226 3.5 Analog of Gross–Koblitz for geometric gamma: The F [t] case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 q 3.6 Fermat t-motives . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 3.7 ABP criterion: Period relations are motivic . . . . . . . . . . . . 228 3.8 Complete determination of geometric gamma relations for F [t] . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 q 4 Automata Method, General A, the v-adic Situation and Another Gamma Mystery . . . . . . . . . . . . . . . . . . . . . . . . . . 231 4.1 Automata and transcendence for arithmetic gamma. . . . . . . . 231 4.2 General A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4.3 Another gamma function coming from the exponential analogy: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4.4 Some details: Drinfeld correspondence in the simplest case . . . . 236 4.5 Some details: Definition of new gamma . . . . . . . . . . . . . . . 238
Description: