ebook img

arithmetic and modularity in declarative languages for knowledge representation PDF

190 Pages·2014·1.36 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview arithmetic and modularity in declarative languages for knowledge representation

ARITHMETIC AND MODULARITY IN DECLARATIVE LANGUAGES FOR KNOWLEDGE REPRESENTATION by ShahabTasharrofi M.Eng.,SharifUniversityofTechnology,2008 B.Eng.,IranUniversityofScienceandTechnology,2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DoctorofPhilosophy inthe SchoolofComputingScience FacultyofAppliedSciences (cid:13)c ShahabTasharrofi 2013 SIMONFRASERUNIVERSITY Fall2013 Allrightsreserved. However,inaccordancewiththeCopyrightActofCanada,thisworkmaybe reproducedwithoutauthorizationundertheconditionsfor“FairDealing.” Therefore,limitedreproductionofthisworkforthepurposesofprivatestudy, research,criticism,reviewandnewsreportingislikelytobeinaccordance withthelaw,particularlyifcitedappropriately. APPROVAL Name: ShahabTasharrofi Degree: DoctorofPhilosophy TitleofThesis: Arithmetic and Modularity in Declarative Languages for Knowl- edgeRepresentation ExaminingCommittee: Dr.AndreiBulatov,AssociateProfessor, ComputingScience,SimonFraserUniversity Chair Dr.EugeniaTernovska,AssociateProfessor, ComputingScience,SimonFraserUniversity SeniorSupervisor Dr.DavidG.Mitchell,AssociateProfessor, ComputingScience,SimonFraserUniversity Supervisor Dr.UweGla¨sser,Professor, ComputingScience,SimonFraserUniversity Supervisor Dr.OliverSchulte,AssociateProfessor, ComputingScience,SimonFraserUniversity SFUExaminer Dr.MiroslawTruszczynski,ExternalExaminer, ProfessorofComputerScience, UniversityofKentucky DateApproved: December16,2013 ii Partial Copyright Licence iii Abstract Thepastdecadehaswitnessedthedevelopmentofmanyimportantdeclarativelanguagesforknowl- edgerepresentationandreasoningsuchasanswersetprogramming(ASP)languagesandlanguages that extend first-order logic. Also, since these languages depend on background solvers, the recent advancements in the efficiency of solvers has positively affected the usability of such languages. Thisthesisstudiesextensionsofknowledgerepresentation(KR)languageswitharithmeticalopera- torsandmethodstocombinedifferentKRlanguages. With respect to arithmetic in declarative KR languages, we show that existing KR languages sufferfromahugedisparitybetweentheirexpressivenessandtheircomputationalpower. Therefore, we develop an ideal KR language that captures the complexity class NP for arithmetical search problemsandguaranteesuniversalityandefficiencyforsolvingsuchproblems. Moreover,weintroduceaframeworktolanguage-independentlycombinemodulesfromdiffer- ent KR languages. We study complexity and expressiveness of our framework and develop algo- rithms to solve modular systems. We define two semantics for modular systems based on (1) a model-theoretical view and (2) an operational view on modular systems. We prove that our two semanticscoincideandalsodevelopmechanismstoapproximateanswerstomodularsystemsusing the operational view. We augment our algorithm these approximation mechanisms to speed up the processofsolvingmodularsystem. We further generalize our modular framework with supported model semantics that disallows self-justifying models. We show that supported model semantics generalizes our two previous model-theoretical and operational semantics. We compare and contrast the expressiveness of our framework under supported model semantics with another framework for interlinking knowledge bases,i.e.,multi-contextsystems,andprovethatsupportedmodelsemanticsgeneralizesandunifies different semantics of multi-context systems. Motivated by the wide expressiveness of supported models,wealsodefineanewsupportedequilibriumsemanticsformulti-contextsystemsandshow iv thatsupportedequilibriumsemanticsgeneralizesprevioussemanticsformulti-contextsystems. Fur- thermore, we also define supported semantics for propositional programs and show that supported model semnatics generalizes the acclaimed stable model semantics and extends the two celebrated propertiesofrationalityandminimalityofintendedmodelsbeyondthescopeoflogicprograms. Keywords: KnowledgeRepresentationandReasoning,DeclarativeProblemSolving,Built-inArith- metic,Modularity,Language-independence,SupportedSemantics,StableModelSemantics,Multi- contextSystems v Tomybeautifulwife,Hanie,forallheremotionalsupport vi “Puremathematicsconsistsentirelyofassertionstotheeffectthat,ifsuchandsuchapropositionis trueofanything,thensuchandsuchanotherpropositionistrueofthatthing. Itisessentialnotto discusswhetherthefirstpropositionisreallytrue,andnottomentionwhattheanythingis,of whichitissupposedtobetrue... Ifourhypothesisisaboutanything,andnotaboutsomeoneor moreparticularthings,thenourdeductionsconstitutemathematics. Thusmathematicsmaybe definedasthesubjectinwhichweneverknowwhatwearetalkingabout,norwhetherwhatweare sayingistrue. Peoplewhohavebeenpuzzledbythebeginningsofmathematicswill,Ihope,find comfortinthisdefinition,andwillprobablyagreethatitisaccurate.” —PrinciplesofMathematics,InternationalMonthly,vol. 4, BERTRAND RUSSELL,1901 vii Acknowledgments First and foremost, I would like to offer my utmost gratitude towards my senior supervisor, Dr. Eugenia Ternovska for guiding me and supporting me with her insightful vision. Not only has Eugeniaalwaysbeenasourceofinspiration,but,also,shehasinstilledinmethetwomostessential skillsforaresearcher: findingworthwhilequestionsandsettingyourgoalscorrectly. IwouldalsoliketoexpressmygratitudetowardstheothertwomembersofmyPhDcommittee: Dr. DavidMitchellandDr. UweGla¨sser. DavidhasalwaysbeenfullofinterestingideasandUwe hashelpedmediscoverinterestingrelatedworksinthefieldofSoftwareEngineering. Moreover,IfeelobligedtoextendmysincerestgratitudetowardsthetwoexaminersofmyPhD research: Dr. Oliver Schulte, the internal examiner and Dr. Miroslaw Truszczynski, my external examinerfortheirhelpfulcommentsonmywork. Furthermore,Iwanttothankmymanycollaboratorsduringtheseyearsthatinclude: Xiongnan (Newman) Wu, Amir Aavani, Pashootan Vaezipoor, Alireza Ensan, Maarten Marien, etc. Without them,manyofthediscussionsthatdirectlyaffectedthisthesiswouldhavesimplynotexisted. Last but not the least, I would like to thank my family and my wife for believing in me and helpingmeinwhateverwaypossiblethroughtheseyears. ShahabTasharrofi viii Contents Approval ii PartialCopyrightLicense iii Abstract iv Dedication vi Quotation vii Acknowledgments viii Contents ix ListofFigures xiii 1 Introduction 1 1.1 Extendingthelanguageofasolver . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Combininglanguagesandsolvers . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Background 14 2.1 ModelExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Multi-contexSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Built-inArithmeticinModelExpansion 18 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 OurGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 PreviousCloselyRelatedWork . . . . . . . . . . . . . . . . . . . . . . . 20 ix 3.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 MotivatingExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 CapturingandNon-ExpressibilityResultsforPracticalKRLanguages . . . . . . . 31 3.4.1 CapturingResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.2 Non-expressibilityResultsunderComplexityAssumptions . . . . . . . . . 34 3.4.3 UncoditionalInexpressibilityResults . . . . . . . . . . . . . . . . . . . . 40 3.4.4 SafetyinASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 LogicPBINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.1 Bellantoni-CookCharacterizationofPTIME . . . . . . . . . . . . . . . . 47 3.5.2 NP⊆PBINTMX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5.3 PBINTMX⊆NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.6 PBINTastheBasisforaModelingLanguage . . . . . . . . . . . . . . . . . . . . 50 3.7 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 ModularModelExpansion 56 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.1 ModelExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.2 PartialStructuresandExtensions. . . . . . . . . . . . . . . . . . . . . . . 63 4.3 ModularSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.1 TheAlgebraofModularSystems . . . . . . . . . . . . . . . . . . . . . . 66 4.3.2 Model-theoreticSemanticsforModularSystems . . . . . . . . . . . . . . 68 4.3.3 FixpointSemanticsforModularSystems . . . . . . . . . . . . . . . . . . 70 4.4 ExpressivePower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5 ComputingModelsofModularSystems . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.1 NaiveModularModelExpansionAlgorithm . . . . . . . . . . . . . . . . 82 4.5.2 PartialStructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5.3 RequirementsontheModules . . . . . . . . . . . . . . . . . . . . . . . . 85 4.5.4 RequirementsontheSolver . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5.5 LazyModularModelExpansionAlgorithm . . . . . . . . . . . . . . . . . 91 4.6 CaseStudies: ExistingFrameworks . . . . . . . . . . . . . . . . . . . . . . . . . 93 x

Description:
Computing Science, Simon Fraser University .. Example 1.1 (Sudoku Puzzle: Model Expansion) In the general version of Sudoku puzzle, you . constructs, lists and permutations of lists) that are not supported in first-order logic.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.