ebook img

Are solar chromospheric fibrils tracing the magnetic field? PDF

0.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Are solar chromospheric fibrils tracing the magnetic field?

Astronomy&Astrophysicsmanuscriptno.16018 (cid:13)c ESO2011 January20,2011 Are solar chromospheric fibrils tracing the magnetic field? J.delaCruzRodr´ıguez1,2 andH.Socas-Navarro3,4 1 InstituteforSolarPhysics,RoyalSwedishAcademyofSciences,AlbaNovaUniversityCenter,SE-10691Stockholm,Sweden 2 DepartmentofAstronomy,StockholmUniversity,AlbaNovaUniversityCenter,SE-10691Stockholm,Sweden 3 InstitutodeAstrof´ısicadeCanarias,AvdaV´ıaLa´cteaS/N,LaLaguna38200,Tenerife,Spain 4 DepartamentodeAstrof´ısica,UniversidaddeLaLaguna,38205,LaLaguna,Tenerife,Spain Preprintonlineversion:January20,2011 Abstract 1 Fibrilsarethinelongatedfeaturesvisibleinthesolarchromosphereinandaroundmagnetizedregions.Becauseoftheirvisualap- 1 pearance,theyhavebeentraditionallyconsideredatracerofthemagneticfieldlines.Forthefirsttime,wechallengethatnotion,by 0 comparingtheirorientationtothatofthemagneticfield,obtainedviahigh-resolutionspectropolarimetricobservationsofCaiilines. 2 Theshortanswertothequestionposedinthetitleisthatmostlyyes,butnotalways. n Keywords. Sun:activity-Polarization-Sun:chromosphere-Sun:filaments-Sun:magnetictopology-Sun:sunspots a J 8 Narrow-band solar filtergrams in the Hi 6563 Å (Hα) line (SPINOR, Socas-Navarro et al. 2006) of Caii 8542 Å 1 core display an ubiquitous pattern of fibrilar appearance cover- at the Dunn Solar Telescope of the National Solar ing most of the disk and often connecting patches of magnetic Observatory/Sacramento Peak Observatory (Sunspot, NM, ] R field. Although not as easily, the same pattern is also visible in USA).Theobservingsetupandthedataaredescribedindetail S thechromosphericCaiilines(e.g.Zirin1974;Marsh1976;fora in that paper. We analyze a (λ,x,y) cube acquired by scanning . recentreferenceseePietarilaetal.2009).Fibrilobservationre- the spectrograph slit over a 80×80(cid:48)(cid:48) field of view. Seeing h quireshighspatialandspectral(particularlyinCaii)resolution, conditionswereexceptionallygoodatthetimeandaidedbythe p sincetheyareverythinandobservableonlyintheverycoreof adaptive optics system (Rimmele 2000), we achieved a spatial - o the lines. Because of their visual appearance, which resembles resolution of approximately 0(cid:48).(cid:48)6 (although this figure varies r magneticfieldlinesconnectingthepolesofamagnet,ithasbeen during the scan because temporal fluctuations of the seeing). t s traditionallyassumedthatfibrilsindeedtracethechromospheric Because of its high quality, this dataset has also been used in a magnetic field. To the best of our knowledge, this common as- previous papers studying the chromospheric field and electric [ sumption has never been verified, probably because a proper currents in sunspots (Socas-Navarro 2005a,b). High spatial 1 empirical determination of the chromospheric magnetic field is resolutionisveryimportantfortheobservationoffibrils,which v very challenging, requiring high-resolution spectropolarimetry arebarelyvisibleintypicalspectroscopicobservationsofmore 1 inchromosphericlines.Suitableinstrumentationforthispurpose modestresolution. 5 hasonlyjustbecomeavailable.Kuckeinetal.(2010)wereable The second cube was acquired on 2008 June 6 with the 5 to determine the vector field in filaments (where the magnetic Fabry-Perot interferometerCRisp Imaging Spectro-Polarimeter 3 field is relatively strong) using the TIP polarimeter (Collados (CRISP,Scharmer2006)infullStokesmodeattheSwedish1-m . 1 etal.1999). Solar Telescope (SST, Scharmer et al. 2003). The Caii 8542 Å 0 Thetransverse(i.e.,projectedontheplaneofthesky)com- line was sampled at 17 wavelength points across the range 1 ponentofthemagneticfield,whichiswhatweareinterestedin ±1.3 Å from the core of the line, separated equidistantly by 1 forthiswork,isdeterminedsolelybytheobservedlinearpolar- 162mÅ.TheinstrumentalprofileofCRISPhasafullwidthhalf : ization signals (Stokes Q and U profiles). Unfortunately, these v maximumofapproximately100mÅat8542Å.Theimagesare Xi signals are typically very weak and their observation presents processed using the image resconstruction code Momfbd (van numerouschallenges.Toextractaclearsignalabovethenoise, Noort et al. 2005), according to the scheme described in van r weselectbyhandasmallsegmentalongthedirectionofafibril a Noort&RouppevanderVoort(2008)andSchnerretal.(2010). andaveragetheStokesQandUprofilesspatiallytoimprovethe Thepolarimetricresponseofthetelescopeiscalibratedusinga signal-to-noise ratio (Q and U are averaged separately). From one meter polarizer, mounted on the entrance lens. Calibration theprofilesthusobtained,wecandeterminetheazimuthofthe images are used to fit the parameters of a theoretical model of magneticfieldontheplaneofthesky. Wepresenthereresultsfromtwodifferentdatasetsacquired thetelescopeasinSelbing(2005). withtwodifferentinstruments,aFabry-Perotinterferometerand The SPINOR observations have higher spectral resolution aslitspectro-polarimeter.Owingtothenatureoftheinstrumen- thantheCRISPones(120mÅdominatedbyinstrumentalreso- tation employed, each dataset exhibits its own advantages and lutioncomparedto324 mÅdominatedbyspectralsampling,re- disadvantagesforourpurposesbuttheycomplementeachother spectively)andslightlyhigherpolarimetricsensitivity.Thenoise well,aswediscussbelow. in the Stokes parameters in the absence of signal (measured as The first dataset is a spectro-polarimetric scan with thestandarddeviationinthecontinuumawayfrommagneticar- the Spectro-Polarimeter for INfrared and Optical Regions eas)is 4.5×10−4 and1.3×10−3,respectively,inunitsoftheav- 1 delaCruzR.andSocas-Navarro:Arechromosphericfibrilstracingthemagneticfield? erage quiet-Sun continuum intensity. The spatial averaging of Table 1. Fibril orientation χ and magnetic-field azimuth Fibril the profiles that we carry out in our analysis works well in im- χ inthechromosphereoftheSPINORdataset. Field provingthemagneticsensitivityaslongastheobservationsare photon-noiselimited.However,atsomepointonereachesalimit inwhichtheuncertaintiesaredominatedbyotherfactorssuchas Index χ χ ±σ |∆χ|/σ Fibril Field χ χ the goodness of the calibration, flat-fielding, spurious artifacts 1 34.7 153.4±13.0 9.13 introducedintheimagereconstructionprocess,andsoforth.In 2 216.7 164.0±9.0 5.86 theSPINORcase,thislimitisreachedatapproximately5×10−5, 3 195.2 161.5±8.0 4.22 whereasforCRISPitisaround10−4.TheCRISPobservations, 4 80.1 104.4±8.4 2.91 ontheotherhand,havemuchhigherspatialresolution(0(cid:48).(cid:48)2com- 5 103.1 131.6±4.7 6.06 pared to 0(cid:48).(cid:48)6) and the linear polarization reference direction is 6 125.4 140.1±5.1 2.91 known.Itisthenpossibletoderivetheabsoluteazimuthdirec- 7 142.4 159.1±7.3 2.28 tion without any additional assumptions. For SPINOR, unfor- 8 175.1 154.8±8.2 2.49 tunately,thelinearpolarizationreferenceframewasnotknown 9 144.8 154.6±12.0 0.81 and we need to resort to an a posteriori calibration of the zero 10 149.7 155.9±4.3 1.43 11 158.3 158.5±5.3 0.03 azimuthusingthedatathemselves.Forthis,weusedanumberof 12 184.2 179.2±4.5 1.11 penumbralfilamentsvisibleinthesunspotphotosphereandcal- 13 185.6 174.2±4.0 2.83 culatedthefieldazimuthinthoselocationsasexplainedbelow. 14 186.6 197.7±4.6 2.42 A constant offset was added to all the azimuth values and ad- 15 214.3 215.8±4.1 0.35 justeduntilthefieldorientationmatchedallthefilamentssimul- 16 28.9 53.7±4.8 5.18 taneously.Theresultingoffsetuncertainty(whichpropagatesdi- 17 39.8 50.4±5.1 2.10 rectly into the fibril azimuth determinations) is approximately 18 43.3 58.1±4.2 3.54 2o. 19 59.7 64.1±4.0 1.08 In both cases (SPINOR and CRISP), we analyze observa- tions of strong magnetic fields (in the vicinity of a sunspot) to ensurethatthepolarizationinducedinthespectrallinesispro- duced by the Zeeman effect. In the quiet Sun, one would have sufficientlyhigh.Foreachfibril,theazimuthwascalculatedus- todealwithcomplicationsduetotheinfluenceoftheHanleef- ingEq.1.Toestimatetheerrorintheazimuthmeasurements,a fect,whichnotonlydepolarizesthelight(whichwouldbeirrel- Gaussiandistributionofrandomvalueswiththesamesigmapa- evant to our study) but also changes the relative amplitudes of rameterasthestandarddeviationinthenoiseisaddedtoQand StokesQandU (MansoSainz&TrujilloBueno2010).Mostof U and the azimuth is recomputed. This procedure is repeated the fibrils studied here are of a category that is sometimes re- 100timeswithdifferentrealizationsofthenoise,yieldingatotal ferred to as superpenumbral fibrils (see e.g. Balasubramaniam of100azimuthvalues.Thespreadintheresultsobtainedallows etal.2004)becausetheyoriginatejustbeyondtheboundaryof ustoestimatetheuncertaintiesinvolved.Theredconesdrawnin asunspotpenumbra. thefigureontheyellowsegmentsoutlinealltheazimuthrealiza- Figure 1 shows the chromospheric field of view observed tionsobtainedforeachfibril.Table1liststhevaluesofazimuth with SPINOR in a grayscale image. Superimposed on that im- obtainedcomparedtotheorientationofthefibrils.Therightmost age,yellowlinesindicatethefibrilsegmentsthatwehavemanu- column lists the discrepancy in units of the spread (σ ). When allyselectedforanalysisbasednotonlyontheappearanceofthe χ thisvalueissignificantlylargerthanthree,wehaveaveryhigh fibrilsbutalsoonthepresenceoflinearpolarization.TheStokes probability that the magnetic field orientation is incompatible profilesinsidethebanddefinedbyeachsegmentandawidthof withthatofthefibril. 3 pixels were averaged to produce one low-noise set of Stokes profiles for each fibril. The azimuth χ was then obtained using Wenotehowmostfibrilsarealignedwiththemagneticfield, thefollowingformula(Jefferiesetal.1989) althoughthereareafewnoteworthycaseswheresignificantmis- alignments occur, well above the observational error. The most (cid:82)∞ f(λ)U(λ) obviousarelocatedatthebottomleftportionofthemap(fibrils tan(2χ)= (cid:82)0∞ , (1) 1 through 5) near the smaller sunspot. Another interesting re- f(λ)Q(λ) 0 gionisjustabovethelargespot,wherewefindfibrilsperfectly where f(λ)isabandwithselectionfunction.Inthiscase,wetake alignedwiththefieldupuntilnumber15,thenalargemisalign- mentinnumber16,whichgraduallydecreasesin17and18until f(λ)tobearectangularfunctionofwidth300 mÅcenteredon finallynumber19isagainwellaligned. theaveragepositionoftheStokesQandUbluepeak,veryclose tothelinecore.IntheCRISPcase,wetakeasinglewavelength, Forcomparison,Fig.2showsthesameforthephotospheric where the observed linear polarization signal is maximal. The penumbralfilamentsusedtodeterminetheabsoluteazimuthref- validityofthisapproximationisconfirmedaposteriorisinceit erence position. The Q and U signals are stronger inside the providesazimuthvaluesthatmatchtheorientationofthephoto- penumbra,whichiswhytheuncertaintiesaresmaller.Thesolar sphericpenumbralfilamentsintheSPINORdataset.Weusethis limbistowardstherightinthefigureandthereforethetransverse simpler procedure rather than full profile inversions because it component is stronger on the right-hand side of the penumbra workswellindeterminingtheazimuthandinthismannerthere due to projection effects. Notice how in this figure the field is isnoneedtodealwithothercomplicationsinherenttotheinver- muchbetteralignedwiththefilaments. sionprocess. We observe similar behavior in the CRISP data, for which Our selection of fibrils is restricted to regions where polar- theabsoluteazimuthreferenceisknown(seeFig.3andTable2). ization is detected after averaging. Unfortunately, the pixel-to- Mostfibrilsthatshowpolarizationsignalhaveamagneticfield pixelprofilesaretoonoisytocarryoutindividualmeasurements thatisorientedalongthefibrildirection,atleastwithinthemar- of the direction of the field. Only after averaging is the signal gin allowed by the data. However, some areas (e.g., the region 2 delaCruzR.andSocas-Navarro:Arechromosphericfibrilstracingthemagneticfield? Figure1.FieldofviewobservedwithSPINORinthecoreof Caii8542Å.Yellowlines:Fibrilsselectedforanalysis.Theyellow segments define the direction of the three-pixel wide bands used for Stokes Q and U profile averaging. Red cones: Range of magnetic-fieldazimuthcompatiblewiththeQandU profiles.Thespatialsamplingis0(cid:48).(cid:48)22/pixel. Table 2. Fibril orientation χ and magnetic field azimuth Fibril χ inthechromosphereoftheCRISPdataset. Field Index χ χ ±σ |∆χ|/σ Fibril Field χ χ 1 176.1 175.6±11.5 0.04 2 185.7 165.8±4.4 4.53 3 178.0 171.1±4.2 1.65 4 180.0 150.2±3.5 8.55 5 196.9 157.9±8.0 4.85 6 226.1 137.3±3.0 29.97 7 28.9 109.6±6.5 12.41 8 48.3 65.7±14.6 1.19 9 62.3 106.2±6.1 7.19 10 67.9 55.2±5.9 2.15 11 92.1 93.0±10.1 0.09 12 82.6 85.4±4.6 0.60 13 126.3 75.4±9.4 5.43 Figure2. Field of view observed with SPINOR in the wings of Caii8542Å.Yellowlines:Penumbralfilamentsselectedfor analysis.Theyellowsegmentsdefinethedirectionofthethree- pixelwidebandsusedforStokesQandUprofileaveraging.Red Inthelightoftheseresults,weconcludethatthewidespread cones: Range of magnetic field azimuth compatible with the Q andU profiles.Thespatialsamplingis0(cid:48).(cid:48)22/pixel. idea that chromospheric fibrils are a visual proxy for the mag- neticfieldlinesmayneedtobereconsidered.Herewehavelim- itedourselvestopresentingobservationalevidence.Anattempt with fibrils number 4, 6, 7, and 9) have a field orientation that to explain the appearance of the chromospheric fibrilar pattern differssignificantlyfromthatofthefibrils. and the nature of fibrils themselves is beyond the scope of the 3 delaCruzR.andSocas-Navarro:Arechromosphericfibrilstracingthemagneticfield? Figure3. Field of view observed with CRISP in the wing of Caii 8542 Å. Inset: Detailed view of the line core in the region of interest.Yellowlines:Fibrilsselectedforanalysis.Theyellowsegmentsdefinethedirectionofthethree-pixelwidebandsusedfor StokesQandU profileaveraging.Redcones:Rangeofmagnetic-fieldazimuthcompatiblewiththeQandU profiles.Theintensity scalehasbeensaturatedtoenhancethecontrastoffibrils.Thetick-markseparationoftheinsetis2(cid:48)(cid:48) coveringanareaof39×38(cid:48)(cid:48) onthesurfaceoftheSun. presentstudy.Wespeculatethatperhapsthesmalldifferencein tional studies should be conducted to confirm our refute these formationheightbetweentheCaiilinecore(wherethefibrilsare results. The main goal of our Letter is to draw attention to the seen)andtheStokesQandUpeaks(wherethemagneticfieldis subjectsincemoderninstrumentationnowenablesthedetermi- measured)mightexplainthediscrepantbehavior.Thiswouldbe nationofthemagneticfieldvectorinfibrils.Amoredefiniteand averysurprisingresultbecauseconceivingafieldtopologywith comprehensiveanswertothequestionraisedinthispapershould such strong vertical gradients in field orientation, especially in be something that can be realistically expected for the near fu- thelow-βrealmofthechromosphere(wheremagneticfieldpres- turewiththeexistingandupcomingtoolsforsolarobservations sureandtensionsaremoredifficulttosustainasthefielddomi- andtheirinterpretation. natesthedynamicsoftheplasma)isverychallenging.Another possibilitycouldbethatthefieldchangesrapidlyintimeandthe Acknowledgements. We are grateful to Luc Rouppe van der Voort for pro- vidingtheSST/CRISPobservations.Thisresearchprojecthasbeensupported plasmatemperaturestructure(whichiswhatultimatelydictates by a Marie Curie Early Stage Research Training Fellowship of the European theintensitypatternobserved)lagsbehinditsomehow.Orper- Community Sixth Framework Programme under contract number MEST-CT- hapstheexplanationisanentirelydifferentone.Inanycase,we 2005-020395:TheUSO-SPInternationalSchoolforSolarPhysics. pointoutthatthelinearpolarizationsignalobservedinthechro- Financial support by the Spanish Ministry of Science and Innovation mospherearoundsunspotsweakensveryabruptlyasonemoves through project AYA2010-18029 (Solar Magnetism and Astrophysical Spectropolarimetry)isgratefullyacknowledgedbyHSN. outwards from the edge of the penumbra, a finding that is very difficult to reconcile with the large size of the fibrilar patterns thatareseenaroundit,ifthesefibrilsareindeedmagneticfield References lines,becauseinthatcasethechromosphericfieldstrength(and thelinearpolarizationsignal)shouldnotdropoffsoabruptlyas Balasubramaniam,K.S.,Pevtsov,A.,&Rogers,J.2004,ApJ,608,1148 Collados,M.,Rodr´ıguezHidalgo,I.,BellotRubio,L.,RuizCobo,B.,&Soltau, itisobserved. D.1999,inAstronomischeGesellschaftMeetingAbstracts,13 Jefferies,J.,Lites,B.W.,&Skumanich,A.1989,ApJ,343,920 Although the data and the analyses presented here are rea- Kuckein,C.,Centeno,R.,&MartinezPillet,V.2010,ArXive-prints sonably well established, our work obviously has some limita- MansoSainz,R.&TrujilloBueno,J.2010,ApJ,722,1416 tions. Given the relevance of this subject, additional observa- Marsh,K.A.1976,Sol.Phys.,50,37 4 delaCruzR.andSocas-Navarro:Arechromosphericfibrilstracingthemagneticfield? Pietarila,A.,Hirzberger,J.,Zakharov,V.,&Solanki,S.K.2009,A&A,502,647 Rimmele,T.R.2000,inProc.SPIEVol.4007,p.218-231,AdaptiveOptical SystemsTechnology,PeterL.Wizinowich;Ed.,218–231 Scharmer,G.B.2006,A&A,447,1111 Scharmer,G.B.,Bjelksjo,K.,Korhonen,T.K.,Lindberg,B.,&Petterson,B. 2003,inPresentedattheSocietyofPhoto-OpticalInstrumentationEngineers (SPIE) Conference, Vol. 4853, Society of Photo-Optical Instrumentation Engineers(SPIE)ConferenceSeries,ed.S.L.Keil&S.V.Avakyan,341– 350 Schnerr, R. S., de la Cruz Rodr´ıguez, J., & van Noort, M. 2010, submitted, arXiv:1012.1225 Selbing,J.2005,Master’sthesis,StockholmUniversity Socas-Navarro,H.2005a,ApJ,633,L57 Socas-Navarro,H.2005b,ApJ,631,L167 Socas-Navarro,H.,Elmore,D.,Pietarila,A.,etal.2006,SolarPhysics,235,55 vanNoort,M.,RouppevanderVoort,L.,&Lo¨fdahl,M.G.2005,Sol.Phys., 228,191 vanNoort,M.J.&RouppevanderVoort,L.H.M.2008,A&A,489,429 Zirin,H.1974,Sol.Phys.,38,91 5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.