ebook img

AQA A level Physics Specification PDF

72 Pages·2010·3.19 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview AQA A level Physics Specification

GCE AS and A Level Specification Physics A AS exams 2009 onwards A2 exams 2010 onwards GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) Contents 1 Introduction 2 1.1 Why choose AQA? 2 1.2 Why choose GCE Physics A? 2 1.3 How do I start using this specification? 3 1.4 How can I find out more? 3 2 Specification at a Glance 4 3 Subject Content 5 3.1 Unit 1 PHYA1 Particles, Quantum Phenomena and Electricity 6 3.2 Unit 2 PHYA2 Mechanics, Materials and Waves 9 3.3 Unit 3 Investigative and Practical Skills in AS Physics 12 3.4 Unit 4 PHYA4 Fields and Further Mechanics 14 3.5 Unit 5 PHA5A-5D Nuclear Physics, Thermal Physics and an Optional Topic 18 3.6 Unit 6 Investigative and Practical Skills in A2 Physics 33 3.7 How Science Works 35 3.8 Guidance on Centre Assessment 41 3.9 Mathematical Requirements 48 4 Scheme of Assessment 49 4.1 Aims 49 4.2 Assessment Objectives 49 4.3 National Criteria 50 4.4 Prior Learning 50 4.5 Synoptic Assessment and Stretch and Challenge 51 4.6 Access to Assessment for Disabled Students 51 5 Administration 52 5.1 Availability of Assessment Units and Certification 52 5.2 Entries 52 5.3 Private Candidates 52 5.4 Access Arrangements and Special Consideration 53 5.5 Language of Examinations 53 5.6 Qualification Titles 53 5.7 Awarding Grades and Reporting Results 54 5.8 Re-sits and Shelf-life of Unit Results 54 6 Administration of Internally Assessed Units 55 6.1 Supervision and Authentication of Internally Assessed Units 55 6.2 Malpractice 56 6.3 Teacher Standardisation (Route T only) 56 6.4 Internal Standardisation of Marking (Route T only) 56 6.5 Annotation of Centre Assessed Work (Route T only) 57 6.6 Submitting Marks and Sample Work for Moderation (Route T only) 57 6.7 Factors Affecting Individual Candidates 57 6.8 Retaining Evidence and Re-using Marks (Route T only) 57 7 Moderation (Route T only) 58 7.1 Moderation Procedures 58 7.2 Post-moderation Procedures 58 Appendices 59 A Performance Descriptions 59 B Spiritual, Moral, Ethical, Social and other Issues 63 C Overlaps with other Qualifications 64 D Key Skills – Teaching, Developing and Providing Opportunities for 65 Generating Evidence E Data and Formulae Booklet 67 Vertical black lines indicate a significant change or addition to the previous version of this specification. 1 GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) 1 Introduction 1.1 Why choose AQA? It’s a fact that AQA is the UK’s favourite exam • Service 1 board and more students receive their academic We are committed to providing an efficient and qualifications from AQA than from any other board. effective service and we are at the end of the But why does AQA continue to be so popular? phone when you need to speak to a person about an important issue. We will always try to resolve • Specifications issues the first time you contact us but, should Ours are designed to the highest standards, that not be possible, we will always come back so teachers, students and their parents can to you (by telephone, email or letter) and keep be confident that an AQA award provides an working with you to find the solution. accurate measure of a student’s achievements. And the assessment structures have been • Ethics designed to achieve a balance between rigour, AQA is a registered charity. We have no reliability and demands on candidates. shareholders to pay. We exist solely for the good of education in the UK. Any surplus income is • Support ploughed back into educational research and our AQA runs the most extensive programme of service to you, our customers. We don’t profit support meetings; free of charge in the first years from education, you do. of a new specification and at a very reasonable If you are an existing customer then we thank you for cost thereafter. These support meetings explain your support. If you are thinking of moving to AQA the specification and suggest practical teaching then we look forward to welcoming you. strategies and approaches that really work. 1.2 Why choose Physics A? • Physics A provides a seamless transition to – Route T provides continuity in style and A Level from previous studies and develops format from AQA’s GCSE physics assessment students’ interest and enthusiasm for physics. model. This is achieved through assessment of practical skills (PSA) and an individual skills • The AS provides different starting points so assessment (ISA) at AS level through Unit 3 teachers can choose to start the course with and at A2 through Unit 6. topics familiar or new topics. – Route X provides a scheme of internal • The A2 builds on AS and covers essential topics assessment through a verification of practical for progression to post A Level course in physics. skills undertaken throughout the course and It also includes optional topics from the former an externally marked practical test. specification A course. • The specification provides a wide range of • The specification thus provides a smooth pathway opportunities to develop How Science Works by from GCSE and a route to university courses in linking the general criteria on the nature of science physics and other subjects in which physics is a to specific topics throughout the specification. key component. Internal assessment gives students a deep • Physics A reflects the popular elements of both awareness of how science in practice works. predecessor specifications, allowing teachers to adapt existing schemes of work and resources with minimum difficulty. • Internal assessment of practical work is a key feature of the specification. There are two routes to the internal assessment. 22 GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) 1.3 How do I start using this specification? Already using the existing AQA GCE Not using the AQA specifications 1 Physics specifications? currently? • Register to receive further information, such as • Almost all centres in England and Wales use AQA mark schemes, past question papers, details of or have used AQA in the past and are approved teacher support meetings, etc, at AQA centres. A small minority are not. If your http://www.aqa.org.uk/rn/askaqa.php. centre is new to AQA, please contact our centre Information will be available electronically or in approval team at [email protected] print, for your convenience. • Tell us that you intend to enter candidates. Then we can make sure that you receive all the material you need for the examinations. This is particularly important where examination material is issued before the final entry deadline. You can let us know by completing the appropriate Intention to Enter and Estimated Entry forms. We will send copies to your Exams Officer and they are also available on our website http://www.aqa.org.uk/admin/p_entries.html 1.4 How can I find out more? Ask AQA Teacher Support You have 24-hour access to useful information and Details of the full range of current Teacher Support answers to the most commonly-asked questions at meetings are available on our website at http://www.aqa.org.uk/rn/askaqa.php http://www.aqa.org.uk/support/teachers.html If the answer to your question is not available, you There is also a link to our fast and convenient online can submit a query for our team. Our target response booking system for Teacher Support meetings at time is one day. http://events.aqa.org.uk/ebooking If you need to contact the Teacher Support team, you can call us on 01483 477860 or email us at [email protected] 3 GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) 2 Specification at a Glance AS Examination AS Award Unit 1 – PHYA1 Particles, quantum phenomena and electricity 1451 Written Examination – (70 marks/120 UMS), 6 or 7 structured questions 1¼ hours 40% of the total AS marks 20% of the total A Level marks Available January and June Unit 2 – PHYA2 Mechanics, materials and waves Written Examination – (70 marks/120 UMS), 6 or 7 structured questions 2 1¼ hours 40% of the total AS marks 20% of the total A Level marks Available January and June Unit 3 Investigative and practical skills in AS Physics either PHA3T, Centre Marked Route T – 50 marks Practical Skills Assignment (PSA – 9 raw marks) Investigative Skills Assignment (ISA – 41 raw marks) or PHA3X, Externally Marked Route X – 55 marks Practical Skills Verification (PSV – teacher verification) Externally Marked Practical Assignment (EMPA – 55 raw marks) 20% of the total AS marks 10% of the total A Level marks Available June only A Level A2 Examination Award Unit 4 – PHYA4 Fields and further mechanics 2451 Written Examination – (75 marks/120 UMS) 1¾ hours Section A is 25 multiple choice questions, each worth one mark. Section B is a written paper of 4/5 structured questions and consists of 50 marks. 20% of the total A Level marks Available January and June Unit 5 – One of Units PHA5A, PHA5B, PHA5C, PHA5D Written Examination – (75 marks/120 UMS) 1¾ hours Section A: Nuclear and Thermal Physics – 40 marks – Options: Compulsory section 4/5 structured questions A – Astrophysics Section B: one of the following options. B – Medical Physics Each paper has 4/5 structured questions and 35 marks. C – Applied Physics D – Turning Points in Physics 20% of the total A Level marks (Section A 10%, Section B 10%) Available June only Unit 6 Investigative and practical skills in A2 Physics either PHA6T, Centre Marked Route T – 50 marks Practical Skills Assessment (PSA – 9 marks) Investigative Skills Assignment (ISA – 41 marks) or PHA6X, Externally Marked Route X – 55 marks Practical Skills Verification (PSV – teacher verification) Externally Marked Practical Assignment (EMPA – 55 raw marks) 10% of the total A Level marks Available June only + = AS A2 A Level 4 GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) 3 Subject Content Background information The two AS theory units provide alternative starting points for the AS course. Unit 1 invites teachers and students to start AS Physics by venturing into the field of Particle Physics and providing a new interest and dimension to their knowledge of the subject. Unit 2 allows teachers to plan progression from GCSE and to develop topics already familiar to their students. Teachers can choose to start the AS course with either unit as both of these units will be available in January and June. At A2, the two A2 theory units present a generally context-free approach to GCE level Physics, as at AS Level, leaving teachers to select the contexts and applications which bring the subject alive. The first unit of the A2 course, Unit 4, is available for assessment in January and June and develops further the knowledge, understanding and applications of Mechanics and Fields. Unit 5 covers Nuclear and Thermal Physics in Section A and provides a choice of optional topics from former Specification A in Section B. 3 5 GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) New GCE Physics A specification for first teaching 2008: version 0.2, draft submitted to QCA (July 2007) 3 Subject Content 3.1 Unit 1 Particles, Quantum Phenomena and Electricity 3.1 Unit 1 PHYA1 Particles, Quantum Phenomena and Electricity This module involves two contrasting topics in physics: particle physics and This unit einlveoclvtreisc ittwy.o cTohnrtorausgtinhg t thoep iscstu ind yp hoyfs itchse: spear ttioclpei cpsh,y ssictus daennd tesl eschtroicuitlyd. Tgharoinu gahn t haew saturdeyn oefs tsh ese topics, stoufd tehnets osnho-guoldi nggai nd aenv eawloapremneesnst ooff thnee won -idgoeiangs dine vpehloypsmicesn ta onf dn eowf itdheea sa ipnp plhicyasitcios na nodf oinf -the applicatiodne opft hin -kdneoptwh lkendogwele odfg ew oefl lw-eesll-teasbtalibslhisehded t otoppiiccss ssuucchh a as se leecletrcictirtiyc. iPtya.r t icPlea prthicylseic sp hinytrsoidcusc es students to the fundamental properties and nature of matter, radiation and quantum phenomena. In contrast, introduces students to the fundamental properties and nature of matter, radiation the study of electricity in this module builds on and develops previous GCSE studies and provides opportunities and quantum phenomena. In contrast, the study of electricity in this module builds for practical work and looks into important applications. on and develops previous GCSE studies and provides opportunities for practical work and looks into important applications. 3.1.1 Particles and Radiation 3.1.1 Particles and Radiation • Constituents of the atom • Constituents of the atom Proton, neutron, electron. Proton, neutron, electron. Their charge and mass in SI units and relative units. Specific charge of nuclei and of ions. Atomic mass Their charge and mass in SI units and relative units. Specific charge of nuclei and unit is not required. of ions. Atomic mass unit is not required. Proton number Z, nucleon number A, nuclide notation, isotopes Proton number Z, nucleon number A, nuclide notation, isotopes 3 • • SSttaabbllee aanndd uunnssttaabbllee nnuucclleeii The strong nuclear force; its role in keeping the nucleus stable; The strong nuclear force; its role in keeping the nucleus stable; short-range attraction to about 3 fm, vsehryo-rsth-roartn rganeg ae trterapucltsioionn btoe loawb oaubto u3t f0m.5, fvme.ry-short range repulsion below about 0.5 fm; EEqquuaatiotinosn fso rf oalrp haalp dheac adye acnady β a– nddec βay- dineccluadyin ign tchleu dainntign etuhterin noe.utrino. • Particles, antiparticles and photons • Particles, antiparticles and photons Candidates should know that for every type of particle, there is a corresponding Caanntdipidaartteicsl esh. o Tulhd ekyn oswh othualtd f okrn eovwer yt htyapte t hofe p parotisciletr,o tnhe, rteh ies aa ncotirprersoptoonnd, inthge a natniptainrteiculet.r oTnhe y should know that the positron, the antiproton, the antineutron and the antineutrino are the antiparticles and the antineutrino are the antiparticles of the electron, the proton, the neutron of the electron, the proton, the neutron and the neutrino, respectively. and the neutrino respectively. Comparison of particle and antiparticle masses, charge and rest energy in MeV Comparison of particle and antiparticle masses, charge and rest energy in MeV. Photon model of electromagnetic radiation, the Planck constant, Photon model of electromagnetic radiation, the Planck constant, hc E = hf = λ KKnnoowwleldegdeg oef aonf naihnilnatihioinla atniodn p aainr dpr opdauirc tpiorno dpruoccteiossne sp raoncde tshse eress paencdti vteh een reersgipees cintvivoelv ed. The uesnee orfg Eie =s mincv2 oisl vneodt .r e qTuhiree du isne c aolcf uEla =tio mnsc.2 is not required in calculations. • • PPaarrttiiccllee iinntteerraaccttiioonnss Concept of exchange particles to explain forces between elementary particles Concept of exchange particles to explain forces between elementary particles. The electromagnetic force; virtual photons as the exchange particle. The electromagnetic force; virtual photons as the exchange particle. The weak interaction limited β-, β+ decay, electron capture and electron-proton Tchoel liwseioank sin; teWra+c taionnd l imWit-e ads β t–h, eβ +e dxecchaay,n egleec tproanr tcicapletusr.e and electron-proton collisions; W+ and W– as the exchange particles. Simple Feynman diagrams to represent the above reactions or interactions in Simple Feynman diagrams to represent the above reactions or interactions in terms of particles going terms of particles going in and out and exchange particles. in and out and exchange particles. • Classification of particles • CHlaadsrsoinfisc:a btiaornyo onfs p(parrotitcolne,s neutron) and antibaryons (antiproton and antineutron) Haanddr omnse: sboanryso n(ps i(opnro,t okna,o nne)u.t r on) and antibaryons (antiproton and antineutron) and mesons (pion, kHaaond)r.ons are subject to the strong nuclear force. HCaadnrodnids aatree ss usbhjeocut ltdo kthneo swtr otnhga tn uthclee apr rfoortcoen. is the only stable baryon into which other Cbaanrdyiodnatse se svheonutlud aklnlyo wd ethcaat yth; ein p rpoatortni cisu tlaher, o tnhlye sdtaebclea yb aoryf othn ein tnoe wuhtricohn o sthheor ubladr yboen sk envoewntnu.a lly dLeecpatyo; nins p: aertleiccutlaror, nth, em dueocany, onfe thuetr nineou tr(oenle schtoruolnd baen dkn mowuno.n types). LLeepptotonsn:s e laercetr osnu, bmjeucotn ,t on etuhterin wo e(ealekc tinrotne raancdt imouno. n types). LCeaptnodnisd aartee ssu wbjiellc tb teo ethxep weecatek din tteor akcntioonw. baryon numbers for the hadrons. Lepton numbers for the leptons will be given in the data booklet. Candidates will be expected to know baryon numbers for the hadrons. Lepton numbers for the leptons will be given in the data booklet. 6 GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) New GCE Physics A specification for first teaching 2008: version 0.2, draft submitted to QCA (July 2007) New GCE Physics A specification for first teaching 2008: version 0.2, draft submitted to QCA (July 2007) 3 Subject Content New GCE Physics A specification for first teaching 2008: version 0.2, draft submitted to QCA (July 2007) New GCE Physic s A specification for first teaching 2008: version 0.2, draft submitted to QCA (July 2007) • Quarks and antiquarks • Quarks and antiquarks 3.1 Unit 1 Particles, Quantum Phenomena and Electricity Up (Uup) ,( ud),o dwonw n(d (d) ) aanndd ssttrraanngge e(s )( sq)u aqruksa roknsly .only. P•r opPQerour ptaieerrstkie sos fao Tqfn uhqduais aar rkmnkssto::i qdcchuhuaalaerrrg gkienes, v,b oablrvayeorynso ntnwu mnoub cemor nbanterdra assttnriandng gs ettornapensicsgs.e nine pssh.y sics: particle physics and • Quarks and antiquarks ComCUbopmin (bauitn)iao, tndiosone wsole fonc fq t(qrudiuca)a irtrakyknss. d aaT nsnhdtdrr aao annutngigqtehiuq a (turhska)esr qkrsesutqu aruderirkyeqs duo oiffro netrh ldbye a.f sro yero nbtosa p(rpyicroosnt,o ssn t (aupndrdoe tnnoetnsu t rsaohnnod ou nnlldey) u,g taarnoitninb aarny oanws areness Up (u), down (d) and strange (s) quarks only. only(aP),n rtaoipnprtoeibtrotanier aysono fod nt fhsa qen (ut aionanenrtuk-igptsroor:o nicnt hoognan ldry ag)e anevnd,e d bla omanpretmyisnooeennnus nt t (rpuooimfon nn b oeaenwnrdl ya i)dkn aeadoan nssd) t orimnan lnyep.gsheoynnsesics s(sp .ai onnd aonf dth kea oanp)p lication of in- Properties of quarks: charge, baryon number and strangeness. onlyC.C h oamngbei nofa qtdiuoeanprkst h co hkfa nqraoucwaterlerk idsng aβen– adon fa dwn βet+ilq ld-ueeacsratkay.sb lrieshqeudir etodp fiocrs b saurcyho nass (eplreocttornic iatyn.d Pnaerutitcrolen physics Combinations of quarks and antiquarks required for baryons (proton and neutron ChaAonpngplelyic )oa, tfai oqnnut ioianbfr tatkrhro eycd ohcunaocnsreas (seca rtsvneattruti ipoidnrneo βnltao-tw sans n t aofdon rtβ dhc+ eha ad nfreugticnena,de byaua.m trryoeonnn tnoaunl mlpybr)oe arp, neledrpt itmeonse nsauonmndbs ne (rap atiuonrdne s aotrnaf dnm gkeaantoteesnrs), radiation only), antibaryons (antiproton and antineutron only) and mesons (pion and kaon) Apptlooic npalaytri.to ic nle o infa ttenhrdaec qctiouonansns. teTurhmvea ntpieohcnee snlsaoawmryse d fnaoatra. cw Ihinlal bcrgeo enp,rt orbavaisdrtey,d ot hnine nq suutemusdtbioyen ros,f f loeerpl eptcoatrnrtii ccnleiutsym oinbut esthrid iaes n tmhdo osde ule builds only. CsthraasnnCpggeheecan ifioneefgds qe.su otaoofr n qkp uaacanrhtrdiakc r dlaceehc ivtaneertrelao ricpnats ecβ rtp-i oiarnnen svβd.i-o βa uT+ns hdd eG eβ cnC+ae SdyceE.e c ssastyau.rd yie dsa atan dw ipllr obvei dperos voidpepdo ritnu nities for practical quesAtipopnlsic afotiro wpnao orrtkfi c tahlenesd c oloounotsskeisdr evin atthtoioo insme lpa sowprstea cfnoiftir e acdph.p alricgaet,i obnasr.y o n number, lepton number and 3.1A.2p pElicleactiotrno mof athgen ectoincs Reravdaitaiotnio lna wasn dfo Qr cuhaanrgtuem, b aPrhyeonn onmumenbaer, lepton number and strangeness to particle interactions. The necessary data will be provided in 3.1.2 sEtrleacntgre3on.m1e.as1sg ntoPe atpircat riRcticlaeldes i iaantntieodrn aR caatnidodnia sQt.i uo Tanhn etu nmec Pehsseanroym daetnaa w ill be provided in questions for particles outside those specified. questions for particles outside those specified. •• TheT phheo pto•h eolteCoceotrlneicsc tteirtfiucfee ecntftf se cotf the atom 3.1.2 Electromagnetic Radiation and Quantum Phenomena 3.1.2 EWleocrWktr oforukmn fucantgicontnioPe nφtr io,φc ,tp oRthhnoar,e tdsnohieeaoultleditocr fotrnreni qca,u neeeldnqec ucQyat rfutoi,oa npnn.h t ohutfom =el ePφc ht+rie cEn eo;q umthaeetio nsnat oh fp =p iφn g+ pEo;t ethnet isatlo pping potential o k k e•x peeTxrhpimeere impnhet noistt T iosnh enoelote itrr c recetqqrhiuuaciirrr egeedefd.f .ea cntd mass in SI units and relative units. Specific charge of nuclei and • The photoelectric effect Work funcotfi oionn φs,. p Ahtootmoeicle mctariscs e uqnuiat tiiso nn ohtf r=e qφu +ir eEd;. the stopping potential •• WCoolrClkeis oxfiuplolneinscrsiitomi oonenfsPn φe tro, lo iefspt co ehntnloroe otntco nuretesrmloeq wbcnuetisirrtrie hc wZd ea,.i tqtnhouu maacttlseioo omnn h snf u=m φb +e rE Ak;, tnhuekc slitdoep pniontga tpioonte, nistoiatol pes 3 eTxhpee reimlecetnrot nis vnooltt. required. The electron volt. I•o nisCaotilolins •ia onndSs et oaxbfc ileteal etaicontndr;o uunnnsds wetaristbhtlae an ntdouinmcgls eo if ionization and excitation in the • CollIiosniiosantiso no afn edl eexcctirtaotniosn; wunitdhe rasttaonmdinsg of ionisation and excitation in the fluorescent tube. fluorTehsece enlet ctutTrbohene. vsotrlto. ng nuclear force; its role in keeping the nucleus stable; The electron volt. Ionisations ahnordt -eraxncigtaet iaotntr;a ucntidoenr tsota anbdoinugt 3o ff mio,n vizeartyio-snh aonrtd r aenxgceita rteiopnu lisni otnh eb elow about 0.5 fm; •• IEonniesEfralgnutiyeoo rrnlege syavc neleedlnsE vet qe axtuluncsabdi ttaea iopn.t inhodson p;ft oohurnno a dteloepmnrhs iastea smdnieodicsinnas gyio aonnf dio nβi-z daeticoany ainncdl uedxicnigta tthioen nine uthtrein o. fLluinoerLe isnsepc eespcnettrc attur a(be (ee.g.. g. . ooff aattoommicic h hydyrdorgoegne) ans) eavsid eenvcide eonf ctrean osfit itornasn bseittiwoenesn b deistcwreetee ne ndeirsgcyr leetvee ls in e•n earEgtonym elser.gv•ey l sle Pivnae raltstioc amlenssd., panhtoiptoanrt eicmleiss sainodn photons • Energy levels and photon emission hf =h LEf i=n –eE Es –p eEcCtraan (dei.dga. toefs asthoomuicld h kyndorwog tehna)t afosr eevviedreyn tcyep eo fo tfr apnasrtiticiolen,s t bheetrwe eise na dciosrcrreestpeo nding Line esnp1eercg1tyr2a l e(2aeven.gltsi.p oianfr taaicttoolemm. is cT. hh eydy rsohgoeunl)d a ksn eovwid tehnact eth oef ptroasnitsriotino,n tsh eb eatnwteiperno tdoins,c trheete a ntineutron •• eWnaevrWhgefya -= pvle aeEvr-etp i–lcsa lE areintn i dcdaul tetoah mldeit usya.a n ltiitnyeutrino are the antiparticles of the electron, the proton, the neutron hCf a=n Edi1d –a tEe21s sha2onudl dth ken noewu ttrhinato erleescptreocnt ivdeiflfyra. ction suggests the wave nature of Candidates should know that electron diffraction suggests the wave nature of particles and the p•a rtiWcleasv ea-npda rthtiec lpeh doutoaeliletyc tric effect suggests the particle nature of • Wavpeh-optoaerlteicctlrieCc odefmufeacplta istryuisg ognes otsf tphea rptiacrlteic lea nndat uarne toipf aelretcictrloem magansesteics w, acvheasr; gdee taainlsd o fr epsartt iecunlearr gy in MeV. elecCtroamndaigdnaetetisc swhaovuelds ;k dneotwai ltsh aotf eplaerctitcrounla rd imffreatchtoiodns souf gpgaertsictsle t hdeif fwraacvteio nn aatruer en ootf Canmdiedthaotedss osfh Ppoahurotlidtcol ekn nd mioffwroad cttehiola not afe reele lnecoctrtt oreonxmp deaicfgftrenadec. ttiico nra sduiagtgioens,t st hthee P wlaanvcek ncaotnusrtea notf, expepcatretdic.l es and the photoelectric effect suggests the particle nature of particles and the photoheclectric effect suggests the particle nature of electromaEg =ne htifc = w ave s; hdetails of particular methods of particle diffraction are not edlee cBdtrreoo Bmgrloaiegg liwne eawtviacev elwelenangvgetthhs ;λλ d =e tails ,o wf hpearreti cmuvla irs mtheet hmoodms oefn ptuamrt.ic le diffraction are not expected. expected. Knowledge of mavnnihilation and pair production processes and the respective h 3.1.3 dCeu Brwrdrehoeneg rBtlei e rEmo lwvge laicsieev ttr enhwielceea irmntvgygoei emtlhese n λningt u=vthmo l.λvh e=d , .mw Tvhhe, erwe uh mseevre ios mf tEvh ei=s m mthocem2 imse nontmoutme rne. tquumir.e d in calculations. mv • Charge, c•u rrPenatr taicnlde ipnotteernatcitailo dnisf ference 33..11..33 CCuurrrreenntt EElleeccttrriicciittyy 3.1.3 CEulercrternict cEulrercetnCrtio canistcy et hpet oraf teex ocfh falonwge o pf acrhtaicrlgees; tpoo etexnptlaiainl dfioffrecreesn bceet wase ewno rekl edmoneen tpaeryr particles u•n it Cchhaarrggee. , cTuhrer eenletc atrnodm paogtneentitcia flo drcieff;e vriertnucael photons as the exchange particle. •• ChaCrghea,r cguer,r ceunrtr aenndt apnodte pnotitaeln dtiifafle dreifnfecree nce ∆EQlectric cuTrhreeW nwt eaask t hinet eraratec toiofn f lolimw itoefd c βha-, rβg+e d; epcoateyn, teialel cdtirfofenr ecnacpetu ares wanodrk e dleocntero pne-pr roton EI l=e cEturlenicci ttr c aiccunh rcdarue rrVgnrce et=on .atl lsaiss it oht.hne es rr;aa Wttee + oo fa ffl nofldwo w Wo f o-c afh sca rhtghaeer; g peeox;t ecpnhotaiatenl dngitefifae prle adnrictfeifce alreses nw. coerk adso nweo prekr dunoint ceh paregre . unit c∆htarge. Q ∆Q Simple FWeynman diagrams to represent the above reactions or interactions in ∆I Q= and WV = . V IR =e sista na∆cnetd iVst e=dre mfinse .o dfQ bpya rRti c=le s g. oing in and out and exchange particles. ∆t Q I • Classification of paVrticles Resistance is defined by VR = . • RCeusrRirseetsaninstt ca/ envc oiesl tHisda aedgdfeeifinr noceenhdds a b:b ryyba acRrt ye=or insst i.( cpsrIo ton, neutron) and antibaryons (antiproton and antineutron) For an ohmic acnodn dmuecstoorn, sa ( speiomIni,c koanodnu)c. t or diode and a filament lamp; candidates • s•h oCuCludu rrhrreaenvnett/ ve/H oxvaplotdealtrrgaoieegnn secc aehcr haeoraf as rtacuhcbteetj eeuricrssitest ti tocoi csft hsae c sutrrroenngt sneuncsleoar ra fnodrc ae .v oltage sensor with a • Current / voltage characteristics Fdoart aFaF onloor rgoa ngha emnohr io mctho iCccm c oacainocnpdn dctduiuoducrncaetotdt oedrur,,sa c aa tts ao shs refeo,mr mouaicml disoc e nokwdmnnhudoiciccuwtoohc rn tt tohddoirauo dtddc etetioho taedern re ddpm i raoaionn dfitedeola nmVaa eni fs–nid l tat I hla mace mfue ioplrnav;n tmec lylasae n.smn dttiapd lba;a tlcmeeas pb ns;adh croidyauoanldntd eh iisdan vateot e ws hich other Ohmesx’hspo elrauiewldn c ahesa ob vafa et rhs yeepo xeunpscseei a reoile fv canea cncseuteur r oaewfln lhytt he sdeereen usc Isoa ∝rey a ; oVn ifdn. a ap cvaourltrtiarcegunel ats res,ne tsnhoser o wdri etahc naad yd aaot fav tolholgteag gneree t uost erconanpst ousrrh ewo duiatlhtda a bfr oem k nown. should have experience of the use of a current sensor and a voltage sensor with a wdhaictah tloo gdgeLteeerr mptotino cen aIs p:– t euVlr ececu dtrrvaoetsna., fmroumo nw, hniecuht rtoin od e(teelermctirnoen Va n–d I mcuurovne sty. pes). • dRaetsai slotgivgietyr to capture data from which to determine V – I curves. OOhhmm's’ sla wla waLse aaps ts opane cssip aale rcceai asselu cwbahjeseceret wIto ∝h et hVree wI ∝ea Vk. interaction. OhmR’sA law as a special case where I ∝ V. Candidates will be expected to know baryon numbers for the hadrons. Lepton ρ = • Resistivity • ResisLtivity numbers for the leptons will be given in the data booklet. RA DesρRcrA =i p tion of the qualitative effect of temperature on the resistance of metal ρc o=n duc toLrs and thermistors. Applications (e.g. temperature sensors). L SupeDrecsocnrdiputciotinv iotyf athse a q puraoliptaetritvye o ef fcfeecrtta oinf tmematpeeriraaltsu rweh oicnh t hhea vree sziestraon rcees iosft ivmiteyt aalt Descrip tion of the qualitative effect of temperature on the resistance of metal and cboenlodwu cato crrsi taicnadl ttehmerpmeirsattourrse. wAhpicphlic daetipoennsd (se .ogn. ttehme pmearateturirael. s Aenpspolircsa)t.i o ns (e.g. 7 conductors and thermistors. Applications (e.g. temperature sensors). veryS sutrpoenrg c oenledcutcrotimvitayg anse tas ,p proopweerrty c oafb lceesr)t.a in materials which have zero resistivity at Superconductivity as a property of certain materials which have zero resistivity at and below a critical temperature which depends on the material. Applications (e.g. and below a critical temperature which depends on the material. Applications (e.g. very strong electromagnets, power cables). very strong electromagnets, power cables). New GCE Physics A specification for first teaching 2008: version 0.2, draft submitted to QCA (July 2007) • Quarks and antiquarks Up (u), down (d) and strange (s) quarks only. Properties of quarks: charge, baryon number and strangeness. Combinations of quarks and antiquarks required for baryons (proton and neutron only), antibaryons (antiproton and antineutron only) and mesons (pion and kaon) only. Change of quark character in β- and β+ decay. Application of the conservation laws for charge, baryon number, lepton number and strangeness to particle interactions. The necessary data will be provided in questions for particles outside those specified. 3.1.2 Electromagnetic Radiation and Quantum Phenomena • The photoelectric effect Work function φ, photoelectric equation hf = φ + E ; the stopping potential k experiment is not required. • Collisions of electrons with atoms The electron volt. Ionisation and excitation; understanding of ionization and excitation in the fluorescent tube. • Energy levels and photon emission Line spectra (e.g. of atomic hydrogen) as evidence of transitions between discrete energy levels in atoms. hf = E – E 1 2 • Wave-particle duality Candidates should know that electron diffraction suggests the wave nature of particles and the photoelectric effect suggests the particle nature of electromagnetic waves; details of particular methods of particle diffraction are not expected. h de Broglie wavelength λ = , where mv is the momentum. mv 3.1.3 Current Electricity • Charge, current and potential difference Electric current as the rate of flow of charge; potential difference as work done per unit charge. ∆Q W I = and V = . ∆t Q GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) V Resistance is defined by R = . I • Current / voltage characteristics For an ohmic conductor, a semiconductor diode and a filament lamp; candidates should have experience of the use of a current sensor and a voltage sensor with a data logger to capture data from which to determine V – I curves. Ohm’s law as a special case where I ∝ V. • Resistivity • Resistivity RA ρ = L DDesecsricprtiiponti oonf t hoef qthuea liqtautiaveli teaffteivcet oef ftfeemcpt eorfa ttuerme opne rthaetu reresi sotann tchee o fr emseitsatla cnocned uocft omrse atnadl thceormndisutocrtso. rAsp apnlicda ttiohnesr m(e.igs.t oterms.p eAraptpurliec saetinosnosrs )(.e.g. temperature sensors). SSupueprecorcnoduncdtuivcityti vaist ya apsro pae prtryo opf ecretryta oinf mceatretariainls mwhaitcehr ihaalvse w zehrioc hre shisatviveit yz aetr aon rde bseislotwiv iaty c raittic al teamnpde braetulorew w ah icchri tdicepael ntedsm opne trhaet umraet ewriahli.c Ahp dpleicpaetionndss ( eo.gn. tvheery mstarotnegr iealle. c tAropmpaligcnaettiso,n pso w(ee.rg . NNeeww GGCCEE PPhhyyssicicss AA ssppeecciNfificiecawatNit oiGeonwnC fc EofGvoar rPbe C ffilhrEeriyrsyss t sP)t s. tihctetesyraao scAcihnch issgninp g Agee 2csl2ei0pf0i0cec08act8r:itf: oii vocvmenaer trsfaisooiogirno nnf nif roe 0s0r.tt .2 sf2ti,e,r ,s d adptrc raotahefwtfiant scgseuhu rb2ib nm0cmg0ai ti82ttbte:0e ldv0ed e8 tstor:os) v. QioQ eCnrCs A0Aio . (2n(J,J u 0udl.ylr2ya , 2f 2td0 0sr00au77fbt) ) ms uitbtemdi tttoe dQ tCo AQ (CJAul y(J 2u0ly0 72)0 07) NNNNeeewewww G G GGCCCCEEEE P P PPhhhyhyysyssisciicicscss sA A A As s spsppepeececcicfiiififcificicacaataittoitioiononn nf of foforor rf r if frifirsirsrsts ttt t et teteaeaacacchchhihniiningngg g2 2 2020000008088:8 ::v : v veveerersrsrsisoiioiononn n0 0 0.02..2.2,2 ,,d , d drdrararafatff tfts t s susuububbmbmmmitiittitetttetededd dt ot toto oQ Q QQCCCCAAAA ( (J (J(JuJuuluyllyly y2 2 2020000007077)7) ) ) • Circuits •• CCiirrccuuiittss • R•C eisricCstuoirirctss uin i tsse ries; R = R1 + R2 + R3 +... RReessisisttoorrss inin sseerriei•e•s• •s ; ; RCRCCCRTRiTi rie =rirce=rscc cusi RRsuuRuiits1itoei1 tistt +rtsso+sss i r Rsi Rsnt2 o2 pi+ n+ras r Rs aRie3lnl3 er + l+is;e …e…sr;i e RsT; =R TR =1 + R R1 +2 + R R2 +3 +R …3 + … RRRReeeesssissiisiststototoorrsrrss s i ni ininn s s seseeerrirreiieieesss;s; ; ;R R RR = = == R R RR + + ++ R R RR++++ R R RR + + ++ … … …… 11 11 11 11TTTT 1 11111 122 22 1 31333 1 1 1 RReessisisttoorrss inin ppaarraalllelel;l; ResR==is e tsoirsst++ oi n rs p ian+r +pa alleral;l+ l+1e1 11 …l…; = 1111= + 1111+ + 1111+ + …+ … RRRReReReResssissiisiststototoorRrRsrrss s i ni ininn p p RpRpaaaarrarraaallllelllelReelR;ll; l; ; R==== R R++++ R R++++ R R++++ R … … …… eenn3eerrggyy EE == II VV tt,, PP == IIeVeVn,nT, eT PePreg r =yng= eyE II r 1 E2=g12 R y R=I ; E;V aI a t=pV2,p2 p pPItl, il Vci=Pca a tI3=t,V3t ioiP ,RoI RR nV RTPn=TT,,T , T = eIPeV . I.g=, Rg2T RR.RPR 1. 2I1 ;2U1 21 U21=a2n pnR dIpRd ;R1eRl2 Rie2c a2rR2ra2sp2s;ttp itaoaalRnnipR2ncR,R3d pa3de33il3t.niingicog.ga n U 3to,oin ofef d nh.heg,irg isg.e hthU.a gn cnc.du duUinrerrgnrere dsonnteft at hr nsigdthai nncgudr ironefgn ht oriegf qhhu icigreuhmr rceeunnrt rtf eonr at rreeqquuirireemmeenntt ffoorr aa ssttaeaeerensrrtnntteeneaeeeqrerrrr tgrru remggmegyriyr yq oyme oE Eu tEmtEoo io = rt=r =oere= i rInm niI IniI Vtn V eVa Vf aa ton t, mt, trmmt, P, P PfaoPo oo = t t= trs=oo= o Itr raI V arI IVc V cVr,sca, ta, P,rtae P. arPP rr. =r. = t=m = e I Ir o II t m o R R RrRo;; ;t ;ia noa aap rppapp pip nplmillci liciacacoaa attmtiotoitioioroon nntcn,o, ,a ,e re er e...cg. g.ga g.. .r .U U. U Un nnnddddeeeerrsrrsststatataannnnddddiniininngggg o o ooff f fh h hhigiigigghhhh c c cucuuurrrrrrerreeennnntt t t CCoonnsseerrvvaattioionn ooff cchhaarrrerrgrCegCeeqeqoeqqou nu uauniasCriinreisernreoedreemdvmnm rma eveseteeniaeenonnnetnrnteit vtr o tfro gfa ofgnoffoyt ory cri r oor a hi a nifanana s c r s ssgotsshtaietfmaitaam arcartrrprtenhgtpetelderaeelr er r mr e m adgmmndon.eeo.cootcdr to.gat.ot o yorcenrc rir niid rinni ricnei n cn esu ar uia ngmaia ti mety sm psmm .rlo.i egon oo tydt otots ocoriirn rmr cc c ciascrpacaiarlmur.rer. i. t. ps d .l.ec .d c.cir.c cuiirtcsu. its. TThhee rreelalattioionnsshhipipss bbeeCCtCtwCTTowohoeonheennense esTrsens enereher lea rcvrecrvtlvuavia uoaarrattnretirtioritsoeiolieoahonnnnnnitn psti ot soso hsoof, nf ,ib f fpc v sc evchcsohthohwh aliabtlpatarearaegsrerggggt genweebee e c seae sa ua tane anrwnarndnneddend nd ec ede te esnun rnnr,ener eevrecsereosrgurirglsingtgysraytrty tyagse ia ni en,inninn n scv tsc ss eoasisem,inislm imstmdv ap i opnipgrplneell letel essae ss ide sgd ed dt.ra.earc.ic.eicnn.sce. .csd .cs ca e c ic arsirnairicer nrcdincnucsdu ud uiirs tisi eptsietpsttssr.asaa.i .ei .rn sr saact laaellelnnesdlc l iepnsa sr aienllre isle ecsirr icaeunsitd sa, pninadcr lupadallienragl l lel ccirirccuuititss,, ininccluluddiningg cceeTlTTllTcshlcshhe hei ierlenlie csn r c r uer isreniseirelet aleclssalaratuer,ititei roitieiioitioensonssns nc,ns a salsahisunhnnhnhiddpicdidpipi lp sn uiisdsdi sgdd be eb b eibnecnneenteteigttwcttiwtlwci awlcecslaee aeee cleie lelenn clnncsln les sce c icleucinllnusluurrs r irspr reirerniaerenesenr rn a npintpaetlstalsteanss,srl, ,.rd a ,v aav v olvillonodeloletldleltalt.lat .a nagi gdg QtgeQieeecesunsuas se at ela i ascancsntnandetidoidld ol lrn csr nerrese esesi slns wilswssi isispi tsiltiatllanat laan nr nnnpancococealctelte eesr bsasbl s.e i le ni lin ien Qn sl s .sues e eeerQrirsreiieuietesiseso s as na aantsninond ddwnd p sp iplpa laa warnrarraioalallllt lelll nelebelo ll el t be sseett wwhhicichh rreeqquuiriree tthhececc icQ sriuiruicruercscsucetueue uisswt iit tsoeitiostosh,sft,f n ,i , isw csni siniin hncmhiwmcc lciruliculluleluu udhlndqtlddi taonirauinitnneng nigbrgqeg eee c ouc o c ecstuieeruheelselllssetllls ls wes t eiuh ni qhinqisnen iuc sue s ahsuesa e oetserrtireioifrereoi iqeinse esnuosiss smsif ra ea tasantuo notnindhl mdt cded ac iau dia nuidildldeclsetecaeeuenoun nnlntoualtietaciftsict icotsaec aeaeiualm l cql sccl uc ucu eucleetreaelrarllqrlsletnllselius eson in aoni ntinitnsutn ssi p s op op paotneaoraarrq sr a rruac aaltalalolelltlellei elcoc.ll.nu l.a . s lQ laQ cQQttuouueu uelce aeescastsutlsectitoitru ioiroconleanunnstnsers srt w sw ecwwiu nlioillrilt lrllr snle n n nnoooototsrt t t b ob bberee e ppootteennttiaial l ddififffeerreenncceesss.ss. esp peeetoot tt tw etw wepwnhhnothhiiciatticicielhca hdhnh l ri ftr derfireeaeeqirfqlqefqu eudnuuirrciiirfieererefeee ns t .tr chthteheheenese uc .u u eusssessee.e o o ooff f fs s sismiimimmuuuultlltaltataannnneeeeoooouuuusss s e e eeqqqquuuuaaaattitoitioioonnnnsss s t t ototoo c c cacaaalcllclcucuuulallalaattetetee c c cucuuurrrrrrerreeennnnttststs s o o oorr rr ppppooootteteteennnnttitaitiaiaal ll dl d ddifiiffifffefefeerrerreeennnnccceceeesss.s. . . •• PPootteennttiiaall ddiivviid•d eerr • P•P oottPeeonnttteiiaanll t ddiaiivlv ididdieverird er TThhee ppootteennttiaial l ddiviv•i•di• d• e erPr PP uPToTuohosotsheteetetee edTenpdn n onpht ttitttooetiaeoiaia t nal sepl slt ldui noda uddiplttip viiedvipavpviniidlvlidyli dtiydddei ea eveiervvrlarr ra i ddur risieaivaerbidbd lu eleteso r pe psudduds p eteepo.dl.g ygs .tv.u o aaap rpsippapupblylplile cipcv aplaaytdtri oi ivoeana.nbg r al.iea aas sbp p alpadenlin c ep aaa.dtugiuo d.end ia. oigaop s. p aalinpc paaultiidcoiaont i'aovosnl u aamnse a'a cunod anitouro dl.io ‘v‘voolulummee’ ’ ccoonnttrrool.l. TTTTh‘hvhheeoee lp ‘up vppomoooottelteueteen’mnn ntctitaeitoiaiaal’n l l dcl td drodivioivnivivldi.tidi drdeoeeerlr r.r u u uussseseeedddd t t ototoo s s susuuupppppppplyllyly y v v vavaaarrirraiiaiaabbbblellelee p p ppdddd e e ee..g.g.gg.. . .a a aapppppppplillcilicicacaaattitoitioioonnnn a a aasss s a a aannnn a a aauuuuddddioiioioo Examples should include the use of variable resistors, thermistors and L.D.R.'s. The use of the EExxaammppleless sshhoouuldld ininc‘cv‘‘lv‘pvulEovuooodolxdultleuelaueumEn mmm tmttxheiheopeaee’me ’l’m c’e c uecoucspotsoonse lnesnerent t rhtas rtoororoos ofols f. lual . vlh.v .l ad moar ueriinaialadcbsb ulliuelnreidn c rgerleue sitndshissiesett rto utouhmrrssesee, , nu tttohs hifeese vr nromamofrt i isivrasetatboqorlruierasisr ber aaedlen.ns didrs e LtLso..iDrsDst.,.oR Rtr.hs.’s’e,s .rt. hm eisrmtoirsst oarnsd a Ln.dD L.R.D.’.sR. . ’s. TThhee uussee ooff tthhee ppootteenEnEEtEtxiToxixoaxhamamamemmTme epuhptptpleseelelelree esr su sa sao ss ss ssfhes h h ahto aohoo ou muefumul dl tldelphded aioe ani insitn sncepucculcnoulrlurluittudniidendodegengeme tt i ti hniteohnthhestmeseete t ru rreu uu uustasmseemsesere e oe ao anoofn f stfm fvt v ivaavsiaesaar r anmirnraiiasoiaoabeubtbtbl arel rlerliseeen e ru qr geqrrerue esuiisnisnisrisigriessisets tdtotidotrno.oru.r ssr rsms,ts, r, ,teu t hthtnmhheeteer erimrrsmnmm itnsi isiistosstotott oo rnrrsrrsoes s atq a aanrunenndidrqdd e Lu L dLL.i.Dr..D. eDD.d.R.R.R.R. .’.s’.’s’s.s. . . TTTThhhheeee u u uussseseee o o ooff f ft t hththheeee p p ppooootteteteennnnttitoitioioommmmeeeetteteteerr rr a a aasss s a a aa m m mmeeeeaaaasssusuuurrirrniininngggg i ni ininnssststrtrturruuummmmeeeennnntt t ti si isis s n n nnoooott t tr r erreeeqqqquuuuiriirierreeedddd.. . . • Electromotive force and internal resistance •• EElleeccttrroommoottiivvee ffoor•rcc ee •E aa lnnedEcd tl ierinnocttmeterrroonnmtaaivlol errte iefvsoseiirs scfttoaearn nacccneee d a nindt einrntearln raels risetsaisntcaen ce EE ••• • EEEElleleleeccccttrtEtrrorooommmEmoooottittivivivveeee f f offooorrrcrccceeee a a aannnndddd i i nininnttetteeerrrnrnnnaaaall l lr r rereeessssiisisissttattaaannnncccceeee εε == ε ε == II ((RR ++ rr)) ε =E EεEE = ε = εI (=R I +(R r )+ r) QQ εεε ε = = == Q ε ε ε ε = Q= == I I II ( ( R((RRR + + ++ r r r)r) )) QQQQ AApppplilcicaattioionnss;; ee..gg.. lolowwA A ipninppttpelAeiclrirpnacntpaaiaollti lnic rosreaen; stessiio.si;gs nte.ta sa.long;n wc.ec e l.eiong ftw.foe olr rorni n awaatl e crciernaanstrirea s btrlba naraneatcttstlee eir rsfreyoyts.ar. i nas ctcaeanr fcboear t tfaeo rrcy .aar cbaart tbeartyt.e ry. AAAApppppppplillcilicicacaaattitoitioioonnnnsss;s; ; ;e e ee..g.g.gg.. . .l ol loloowwww i ni ininntteteteerrnrrnnnaaaal ll rl r erreeesssissiisiststatataannnnccceceee f f ofofoorr rr a a aa c c cacaaarr rr b b bbaaaatttttteteteerryrryy.y. . . •• AAlltteerrnnaattiinngg ccu•ur rrree•nn ttssA•A lltteeArrlnntaearttininnaggt i cncugur rcrreeunnrtrtsesn ts SSininuussooididaal l vvooltltaagg••e• e• s s A aAaAAnlSnltltldetidtene er crSurncrnunsinuanaroaratrutriiettdiensininnannoggtgltisg ds cv c caoocuouulnulr ntrvlrrarylrreoyrge;e;enl etn rnarntostostgtso sos ae t t ns mmd ae ecnaaudnnr rc sesuqnqrurtuseaa nroretens,, l pyop;ene ralaoykk;o arta onmnoddet pampeneea asakkqn--tu tosoa-q-rppueeea,a arpkeke , a pke aankd a pneda pke-taok--ptoe-apke ak Sinusoidal voltages and currents only; root mean square, peak and peak-to-peak values for sinusoidal vvaalulueess ffoorr ssininuussooididaaSlS lS Swivwniinainanuauluvuusvvsesoeseaoofoisflodiuoid idrdafermaoamals lrl vsl vs vfso voo ooioolnrtlnlta nltuatslaagylsgyign.geo. ee uesisdss s aa oa aanlin ndndwddad a c lc cvucwuueurrarrfrrerovreeenrennmntftstostss sr o mo ooonnnnsnlylll ylyy;oy; ;. ;rn r orrlooyoooo.ot t t tm m mmeeeeaaaannnn s s sqsqqquuuuaaaarrerreee,, , ,p p ppeeeeaaaakkk k a a aannnndddd p p ppeeeeaaaakkk-k-t--tototoo--p--pppeeeeaaaakkk k waveforms only. vvvavaaalulluluueeeesss s f f ofofoorr rr s s sisniininnuuuusssosoooidiididdaaaal ll wl w wwaaaavvveveeeffofofoorrmrrmmmsss s o o oonnnnlyllyly.y. . . II VV I I V V IIrrmmss== o2o2 VVrrmmss== I IIrIrmIro2mrrmo2srmmsmsss =s =I= == r m I s IIoIoo0=oo2 o 2 V V VVr rVrmm rmr msrsm sms s=sV== == r m V V sVV0oo=ooo2 o2 2222 2222 AApppplilcicaattioionn ttoo ccaalclcuulalatAtioiopnnpA loiopcffp a mmltiicaoaa in ni tn i sto so n e ec ltelaeo clc ctctruraicillcacititutyiyo la pnpte ieooaafnk km oaaafn nimdnd s app ieenealsaek kce--ttltroeoic-c-pitptreyeica apiktkey va vpokoel tlataaankggd eae pn vvedaaa lulpukee-etsaso.k.--ptoe-apke vaokl tvaogleta vgael uveaslu.es. AAAAApppppppppplilllciiliccicacaaaatttiitooitioiononn nn t ot t ot otoco ca c claccaaalucllcllcaucuutulialolalanattit oitoioioonfn nnm o o oaoff ifn fm m msm aeaaailnieinincnssts sr e ie ceelieltlelyeec ccptctrtertirrciaicicikctii tyitayty yn p p dppee epeaaaeakkak k ak a a-antnnondd-dd p p p eppeeaeeakaaak kvk-ko-t--tolttotoao--pg--ppepee eeavaaaakklk uk v ev vovsoool.tlltaltataaggggeeee v v vavaaalulluluueeeesss.s... •• OOsscciilllloossccooppee • •O scOilslocisllcoospceo pe UUssee ooff aann oosscci•lillo lo•s•s• c• c ooOpOpOOOeUsess scss accaciecsiUlislil il llolo lsaollaooofse s dssasc dco.ccnco.cofco oo .p.o app appeasneene ecn do idl sl oaacs.i.clccl.oo. vspvocoelotl tmapmseee atatee sdrr ,.,a c tt o.od a .mmcn.ed eaa aanss.ducu r.rae ev. c toti.mil mtvmeoe el itnitmnetteree,rt rvetvoara ,lm slst o eaa anmnsddeu aresu trime eti minete irnvtaelrsv aalnsd a nd ffrreeqquueennccieiess aanndd ttoo ddUUiUsiUUfsssrpssepseeelee alq aof oo yruoyoffe f fe a faa qaa nan.anu.cncn cn oe. oi . o eso nwoswcsssccsiacl acliiacoevliivllsinleolslleoclod ofsofsaos cospctnrcocoremodomop pad pspetsseioe.es . aa pa daN asNdlsisa ssoc ao ya p aaa d dld anda edd.ed..yct.cc. tac .aca.a. .i c .ali w.a sl acsanv nano. ond odvldwftd fm ea at aatfha.eh.ocv.ce.tce.erce. m.r .vsf ,vs o votvtsotroorrolu.mtl u ltmmltc mtcmNsmteetu.euoae etr tser teNetdeueer rr,e orore, o, ,tt f t aofdt tot itomo itehl mh sm teemmea e oie ineleafsat aaest shsorusvuuefura rer tlreseshe tt eat irtmitniu mimsmdcet eterfe uru i eni irnciqnentttuetu eteeoerrrvnrfervv cavat aihaolesllssefls s a t aa haannnendndd d d t o ininssttrruummeenntt isis rreeqquuirireeffrdfrdfderir enei beqsbqsqpuquuutuiltrueant euey fensfan mnaanctmcrc.miceuceiieiie.nmesli islwstai sa ea aira asrnanivtni ntetyndry dfde id o ws t wqtr ot motioruot iet hd sihd rdq.d ie sitiNsutihsdpshpioper plealb el adla oayudoeyyp yt tp a baae faea.iaul.rcs.rc.amct. ac .o t.f .wti ifaw oil wowitamanhanaaver vi voie lvoteiseyfaeftf fofr trofuwothiorhtrcmreyirmemttm u hs wcsrcs .esot. io. ht . no h Nn e NftN N tro ttrooohhooo eldpe sld d sdee i enoe ietrsistaspatatt aa ireetlieuiisliolxrsmlsx aspn o poe toe ofienofo fc ftt cfnt h tt htitehst heehoe dere defe s . s .s q tts tcrhutrturoreuiurucen cctccdttutrout ubournrerulreeste tr o oof ioaofsfl mfs ft te ht ihthlixheisaeepe r ei et yxc pwteeitdhc .tt ehde . iniinionnsspststertrturrruauummtmimoeeneen nnontt tf ti si tisihs s re r er receeqqoqqunuuuitriririeroreeeldsddd ib sb b bueuuutxt t ptf f afeafaamcmmtmeiliidililaili.aiaarrirrtiityityty y w w wwitiithiththh t t hththheeee o o ooppppeeeerrarraaattitoitioioonnnn o o ooff f ft t hththheeee c c cocooonnnnttrtrtorrooolsllsls s i si isis s e e eexxxpxpppeeeeccctcteteteedddd.. . . 8 GCE Physics A Specification for AS exams 2009 onwards and A2 exams 2010 onwards (version 1.3) NNeeww GGCCEE PPhhyyssiiccss AA ssppeecciiffiiccaattiioonn ffoorr ffiirrsstt tteeaacchhiinngg 22000088:: vveerrssiioonn 00..22,, ddrraafftt ssuubbmmiitttteedd ttoo QQCCAA ((JJuullyy 22000077)) 33..22 UUnniitt 22 MMeecchhaanniiccss,, MMaatteerriiaallss aanndd WWaavveess 3 .2 UTThhniissi t AA 2SS mmPooHdduuYlleeA iis2s aa Mbbooueuttc tthhheea ppnrriiinncccsiipp,lle eMss aaanntdde aarppiappllliisccaa attiioonnndss ooWff mmaeevcchheaasnniiccss,, mmaatteerriiaallss aanndd wwaavveess.. TThhee ffiirrsstt sseeccttiioonn iinnttrroodduucceess vveeccttoorrss aanndd tthheenn ddeevveellooppss kknnoowwlleeddggee aanndd This AS uuunnnitdd isee rarssbttoaaunnt ddthiinneg gp rooinffc ffiopolrreccsee assn daa nnaddp p eelicnnaeetriroggnyys fforrfoo mmme cGGhCCanSSicEEs, AAmddaddteiittriiiaoolnsn aaalnl dSS ccwiiaeevnneccsee. .T. h IIenn fi ttrhhstee s sesceetcciooonnn dd introducesssee vccettciiootonnr,s, mmanaadtt eethrreiiaanll ssd eaavrreeelo spststuu kddniioeewddl eiinnd g tteee rrammndss u oonffd ttehhrseetiiarrn bbduuinllgkk oppfr rfooopprceeerrstt iiaeenssd a aennndder gtteey nnfrssoiimllee GssCttrrSeeEnn ggtthh.. AdditionaTTl hhSecei effniinncaael.l Issnee tcchtteiio osnnec eeoxxnttdee snneddcssti oGGn,CC mSSaEEte rssiattuulsdd aiireeess s otounnd iwewdaa ivvnee tsesr mbbyys oddfee tvvheeeillroo bppuiilnnkg gp riionnp--dedreetippestthh a nd tensile strength.kk Tnnhooeww finlleeaddl sggeeec tooioffn tt hhexeet eccnhhdaasr rGaacCcttSeeErri issstttuiiccdssie,,s pp orrnoo ppweearrvtteiiees ssb yaa dnneddv eaalopppppilnliicgca aintti-ioodnnepsst hoo ffk nwwoaawvvleeedssg,, e ii nnoccf lltuuhded iinngg characteristics, properties and applications of waves, including refraction, diffraction, superposition and rreeffrraaccttiioonn,, ddiiffffrraaccttiioonn,, ssuuppeerrppoossiittiioonn aanndd iinntteerrffeerreennccee.. interference. 33..22..11 MMeecchhaanniiccss 3.2.1 Mechanics •• SSccaallaarrss aanndd vveeccttoorrss TThhee aaddddiittiioonn ooff vveeccttoorrss bbyy ccaallccuullaattiioonn oorr ssccaallee ddrraawwiinngg.. CCaallccuullaattiioonnss wwiillll bbee lliimmiitteedd • Scalars and vectors ttoo ttwwoo ppeerrppeennddiiccuullaarr vveeccttoorrss.. The addition of vectors by calculation or scale drawing. Calculations will be limited to two TThhee rreessoolluuttiioonn ooff vveeccttoorrss iinnttoo ttwwoo ccoommppoonneennttss aatt rriigghhtt aanngglleess ttoo eeaacchh ootthheerr;; perpendicular vectors. eexxaammpplleess sshhoouulldd iinncclluuddee tthhee ccoommppoonneennttss ooff ffoorrcceess aalloonngg aanndd ppeerrppeennddiiccuullaarr ttoo aann The resolution of vectors into two components at right angles to each other; examples should include iinncclliinneedd ppllaannee.. the components of forces along and perpendicular to an inclined plane. CCoonnddiittiioonnss ffoorr eeqquuiilliibbrriiuumm ffoorr ttwwoo oorr tthhrreeee ccooppllaannaarr ffoorrcceess aaccttiinngg aatt aa ppooiinntt;; Cpporroondbbillteeiommnsss f ommr aaeqyyu bbilieeb r sisuoomllvv feoerdd t weeoiitt hhoeer rrth bbreyye uucssoiipnnlaggn rraeer ssfooorlclvveeesdd a cffootinrrccgee asst aoo rrp obbiynyt ;uu pssriionnbggle aam scc llmoossaeye ddb e solved 3 either by using resolved forces or by using a closed triangle. ttrriiaannggllee.. • •• MMMooommmeeennntttsss MMMooommmeenetnn ott fo oaff faoar cffooer raccbeeo uaatbb aoo puuott ianat ppdooefiiinnntet ddd eeasffii nnfoeercdde aa xss p ffeoorrprcceeen d ××ic pupleearrr ppdeeisnntaddniiccceuu llfaarorrm dd itisshtetaa pnnoccineet fftrrooo tmmhe ttlhhineee of appcootiiionnntt ottoof t htthheee fo llriicnneee; toooffr qaauccett.iioonn ooff tthhee ffoorrccee;; ttoorrqquuee.. CCCooouuuppplell eeo fo oaff paaa ippr aoafii rre oqouff aeel qqauundaa llo aapnnpdods ooitepp ppfooorcsseiittsee d ffeoofirrncceeedss a dds eefoffirinnceee ddx paaessr pffoeonrrccdeiec u××la ppr edeirrspptaeennncddeii ccbuuetllawarre en the ldidniiessstt aaonnf cacceet iobbnee ttowwf eteheeenn fo ttrhhceees ll.iinneess ooff aaccttiioonn ooff tthhee ffoorrcceess.. TTThhheee p rppinrrciinnipccleiipp olleef moooff mmmeoonmmts eeannndttss i taas nnaddp p iitltiscsa aatipopnppslli iccinaa sttiiimoonnpslse iibnna lssaiinmmceppdllee s ibbtuaaalltaaionnnccsee.dd ssiittuuaattiioonnss.. CCCeeennntrtterr eeo f oomff ammssaa; sscssa;;lc ccuaalalltcciouunllasa ttoiioof ntnhsse oopfof stthhitieeo n pp ooofss tiihttieioo cnne nootffr etth hoeef mcceaesnnstt rroeef aoo ffr e mmguaalassrss l aoomff inaaa rr aeerggeu unlloaatrr e xpected. llaammiinnaa aarree nnoott eexxppeecctteedd.. • Motion along a straight line •• MMoottiioonn aalloonngg aa ssttrraaiigghhtt lliinnee Displacement, speed, velocity and acceleration. DDiissppllaacceemmeenntt,, ssppeeeedd,, vveelloocciittyy aanndd aacccceelleerraattiioonn.. ∆∆ss ∆∆vv vv == ,, aa == ∆∆tt ∆∆tt RRReeeppprerrseeessneetannttitoaantti ioboynn gbbrayyp gghrricaaappl hhmiicectaahllo mmdsee otthhf uoonddifsso roomff auunnndiiff onoorrmmn- u aannnifoddr mnno oannc--cuuennleiirffaootrirommn; aaincctcecreepllreeerrtaaatttiioioonnn o;; f viinenlttoeecrriptpyrr-eetimttaaetti ioaonnnd o odffi svvpeelallooceccmiittyye--ntttii-mmtimee e aa gnnrddap ddhiisss pfpollraa uccneeifmmoreemnn att--nttdiimm neeo n gg-urraanippfohhrsms ffaoocrrc uuelnneiriffaootirrommn; aasinngddni finncooannnc--e of areas and gradients. uunniiffoorrmm aacccceelleerraattiioonn;; ssiiggnniiffiiccaannccee ooff aarreeaass aanndd ggrraaddiieennttss.. EEEqqquuuataaiottiinoosnn fsso rff ouonrr i fuuonnrmiiffo oarrcmmce alaeccraccteeiollnee;rraattiioonn;; vv == uu ++ aatt ,, ss == uu++vv tt  22  ss==uutt++aatt22 ,, vv22 ==uu22 ++22aass 22 AAAcccccceeelellreeartriaaonttii oodnnu e dd tuuoe eg rttaoov igtgyr,r aagvv; idittyeyt,,a ggile;;d dd eeexttpaaeiilrleeimdde neetxxappl meerreiitmmhoeednnstt aaolfl mmmeeeattshhuooriddnsgs goo ffa mrme eenaoatss ruuerrqiinuniggre dgg. aarree Tnneoormtt rirneeaqql usupiirreeeeddd... TTeerrmmiinnaall ssppeeeedd.. • Projectile motion •• PPrroojjeeccttiillee mmoottiioonn IIInnndddeeeppepneednneddneecenn ccoeef v ooefrf t ivvceearlr ttaiicncdaa llh aaonrnizddo nhhtooarlr iimzzooontniottaan;ll pmmrooobttilieoomnn;s; ppwrriolol bbbellee smmolssva wwbliiellll fbbroeem ss fioorslluut bbplrleein cffrirpoolemms. ffTiirrhssett mppreriimnnccoiirppisllieengss ..o fTT phhroeeje mmcteielemm eooqruriiasstiiinnonggs o oisff npporroto rjjeeeqccuttiiilrleeed ee.qquuaattiioonnss iiss nnoott rreeqquuiirreedd.. • •• NNNeeewwwtttooonnn’'’sss lllaaawwwsss ooofff mmmoootttiiiooonnn KKKnnnooowwwlelldeegddegg aeen daa nnadpdp aalicppapptilloiiccnaa ottifio othnne o othff rttehheee l attwhhrsree oeef mllaaowwtisos n oo ifnf mmapoopttriiooopnnr iaiinnte aa sppitpuparrootioppnrrsiiaa.ttee ssiittuuaattiioonnss.. FFoorr ccoonnssttaanntt mmaassss,,FF==mmaa.. For constant mass, F = ma. 9

Description:
Each paper has 4/5 structured questions and 35 marks. Options: A – Astrophysics. B – Medical Physics. C – Applied Physics. D – Turning Points in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.