ebook img

Approximation by Max-Product Type Operators PDF

468 Pages·2016·4.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation by Max-Product Type Operators

Barnabás Bede · Lucian Coroianu Sorin G. Gal Approximation by Max-Product Type Operators Approximation by Max-Product Type Operators Barnabás Bede (cid:129) Lucian Coroianu (cid:129) Sorin G. Gal Approximation by Max-Product Type Operators 123 BarnabásBede LucianCoroianu DepartmentofMathematics DepartmentofMathematics DigiPenInstituteofTechnology andComputerScience Redmond,WA,USA UniversityofOradea Oradea,Romania SorinG.Gal DepartmentofMathematics andComputerScience UniversityofOradea Oradea,Romania ISBN978-3-319-34188-0 ISBN978-3-319-34189-7 (eBook) DOI10.1007/978-3-319-34189-7 LibraryofCongressControlNumber:2016940388 Mathematics Subject Classification (2010): 41A35, 41A20, 41A25, 41A27, 41A40, 41A29, 41A30, 41A05,94A12,47H10,28A80 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Dedicatedtoourlovelyfamilies Preface In this research monograph, we bring to light an interesting new direction in constructiveapproximationoffunctionsbyoperators. There are at least two natural justifications for these new operators, termed by us as max-product operators (for reasons we will see below). They are based on possibilitytheory,amathematicaltheorydealingwithcertaintypesofuncertainties andwhichisconsideredasanalternativetoprobabilitytheory. Thefirstjustificationisbasedontheinterpretationsofthemax-productBernstein operator as a possibilistic expectation of a particular fuzzy variable having a possibilisticBernoullidistributionandonaChebyshev-typeinequalityinthetheory of possibility, facts which are in a perfect analogy with the probabilistic approach ofBernsteinfortheconvergenceoftheclassicalBernsteinpolynomials. ThesecondjustificationisbasedontheFellerschemeintermsofthepossibilistic integral,whichagainisinperfectanalogywiththeclassicalFellers’sprobabilistic schemeusedfortheconstructionoftheconvergentsequencesofpositiveandlinear operators. The generality of these two approaches allows us to obtain convergence results for many discrete max-product-type operators, like the max-product Bernstein operators, max-product Meyer–König and Zeller operators, max-product Favard– Szász–Mirakjan operators, max-product Baskakov operators, max-product Picard operators, max-product Gauss–Weierstrass operators, and max-product Poisson– Cauchyoperators. For these reasons, the max-product-type operators could also be called possibilistic-typeoperators. The method of directly obtaining the max-product operators can easily be formalized as follows (see Open Question 5.5.4, p.324 in the book Gal [84]): for example, in the case of the classical Bernstein polynomials, we write them in the form P B .f/.x/D nkDP0f.k=n/(cid:2)pn;k.x/; n nkD0pn;k.x/ vii viii Preface andthenwereplacethesumoperationbythemaxoperation(bykeepingtheproduct operation),obtaining B.M/.f/.x/D max0(cid:2)k(cid:2)nff.k=n/(cid:2)pn;k.x/g: n max0(cid:2)k(cid:2)nfpn;k.x/g This formalization can then easily be applied to the other classical Bernstein- typeoperators,liketheMeyer–KönigandZelleroperators,Favard–Szász–Mirakjan operators, and Baskakov operators. More importantly, it can be applied to linear approximation operators which are not necessarily positive, like the interpolation- typeoperators. All the max-product operators are nonlinear and piecewise rational, and they present,formanysubclassesoffunctions,essentiallybetterapproximationproper- tiesthantheclassicallinearoperators. It is worth mentioning that the starting point of this research is represented by the papers of Bede–Nobuhara–Fodor–Hirota [31] and Bede–Nobuhara–Dañkova– Di Nola [32], where instead of the classical linear and positive Shepard operator attachedtoapositivefunctionf WŒ0;1(cid:2)!R andtoequidistantnodes, C P n f.k=n/jx(cid:3)k=nj(cid:3)(cid:3) Sn;(cid:3).f/.x/D kPD0n jx(cid:3)k=nj(cid:3)(cid:3) ; kD0 where (cid:3) (cid:4) 1, n 2 N, the authors consider the following Shepard-type nonlinear operator S.M/.f/.x/D max0(cid:2)k(cid:2)nff.k=n/(cid:2)jx(cid:3)k=nj(cid:3)(cid:3)g: n;(cid:3) max0(cid:2)k(cid:2)nfjx(cid:3)k=nj(cid:3)(cid:3)g The new so-called max-product operator remains convergent to the continuous functionf,withaJackson-typerate,namely, 3 jSn.M;(cid:3)/.f/.x/(cid:3)f.x/j(cid:5) 2!1.fI1=n/; validforallx2Œ0;1(cid:2);n2N(see[31]). ComparingwiththeestimatesgivenbytheclassicalShepardoperatorin[141], wenotethatfor1(cid:5)(cid:3)(cid:5)2,theoperatorS.M/.f/givesessentiallybetterestimates. n;(cid:3) In a very long list of papers (see references) whose results are collected by thismonograph,westudytheniceapproximationpropertiesofmanymax-product Bernstein-typeoperators,interpolation-typeoperators,andsamplingoperators. Thebookcanbebrieflydescribedasfollows. In Chapter 1, we give a short account of all basic (classical) approximation operators with their most important properties. We introduce all of their corre- spondingmax-productoperatorswiththeirmaincharacteristicsandgiveotherbasic definitionsandresultswhichareimportantforthecontentofthebook. Preface ix The structure of Chapter 2, which deals with the max-product Bernstein operators,isasfollows: In Section 2.1, we first apply, for the max-product Bernstein operator B.M/, n the general results for sublinear, monotone, and positive homogenous operators in Theorem 1.1.2 in Subsection 1.1.3. Also, for large subclasses of functions, like theconcavefunctions,Jackson-typeestimatesareobtained.Concerningtheshape- preserving properties, it is proved that B.M/.f/ preserves the monotonicity and the n quasiconvexity of f. Finally, a comparison with the approximation order given by theBernsteinpolynomialsismade. InSection2.2,improvederrorestimatesintermsofnŒ!1.fI1=n/(cid:2)2C!1.fI1=n/ forstrictlypositivefunctionsf areobtainedandthepreservationofquasiconcavity off isproved. Section 2.3 deals with the saturation results for B.M/, while Section 2.4 con- n tains very strong localization results for B.M/ (much stronger than those of the n Bernstein polynomials). It is worth noting the strong localization result expressed by Theorem 2.4.1 that shows that if the bounded functions f and g with strictly positivelowerboundscoincideonasubintervalŒ˛;ˇ(cid:2)(cid:6)Œ0;1(cid:2),thenforsufficiently large values of n, B.M/.f/ and B.M/.g/ coincide on subintervals sufficiently close n n to Œ˛;ˇ(cid:2). Then, Corollary2.4.3 shows that B.M/.f/ is very suitable to approximate n strictlypositivefunctionswhichareconstantonsomesubintervals.Namely,iff isa strictlypositivecontinuousfunctionwhichisconstantonsomesubintervalsŒ˛;ˇ(cid:2), i i i D 1;:::;p,ofŒ0;1(cid:2),thenforsufficientlylargen,B.M/.f/takesthesameconstant n valuesonsubintervalssufficientlyclosetoeachŒ˛;ˇ(cid:2),iD1;:::;p.Thisproperty i i isillustratedbyasimplegraphic. InSection2.5,westudytheiterationsandthefixedpointsfortheoperatorB.M/ n andinSection2.6oneappliesthepropertiesofB .f/totheapproximationoffuzzy n numbers. It is also worth mentioning here some approximation results in the L1- norm. Section2.7dealswiththeapproximationandshape-preservingpropertiesfortwo kindsofbivariatemax-productBernsteinoperators. Section 2.8 contains applications to image processing of the tensor product bivariatemax-productBernsteinoperator. In Section 2.9, the max-product Bernstein operators are used to extend all the approximation results to the functions of variable sign, by introducing the new operatorA.M/.f/.x/ D B.M/.f Cc/.x/(cid:3)c,wherec > 0isaconstant chosen such n thatf.x/Cc>0,forallx2Œ0;1(cid:2). InChapters3,4,5,and6,approximationandshape-preservingpropertiesforthe max-productFavard–Szász–Mirakjan operator(nontruncatedandtruncatedcases), the max-product Baskakov operator (nontruncated and truncated cases), the max- product Bleimann–Butzer–Hahn operator, and the max-product Meyer–König and Zelleroperatorareobtained,respectively. Chapter7studiesindetailtheapproximationpropertiesofvariousmax-product LagrangeandHermite–Fejérinterpolationoperators,ongeneralknots,onequidis- tant knots, and on Chebyshev knots of the first and of the second kind. Itis worth

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.