NanoScience and Technology NanoScience and Technology SeriesEditors: P.Avouris B.Bhushan K.vonKlitzing H.Sakaki R.Wiesendanger TheseriesNanoScienceandTechnologyisfocusedonthefascinatingnano-world,meso- scopicphysics,analysiswithatomicresolution,nanoandquantum-effectdevices,nano- mechanics and atomic-scale processes. All the basic aspects and technology-oriented developmentsinthisemergingdisciplinearecoveredbycomprehensiveandtimelybooks. Theseriesconstitutesasurveyoftherelevantspecialtopics,whicharepresentedbyleading experts in the field. These books will appeal to researchers, engineers, and advanced students. SemiconductorSpintronics MagneticMicroscopy andQuantumComputation ofNanostructures Editors:D.D.Awschalom,N.Samarth, Editors:H.HopsterandH.P.Oepen D.Loss SiliconQuantumIntegratedCircuits Nano-Optoelectonics Silicon-Germanium Heterostructure Concepts,PhysicsandDevices Devices:BasicsandRealisations Editor:M.Grundmann ByE.Kasper,D.J.Paul NoncontactAtomicForceMicroscopy ThePhysicsofNanotubes Editors:S.Morita,R.Wiesendanger, FundamentalsofTheory,Optics E.Meyer andTransportDevices Editors:S.V.RotkinandS.Subramoney Nanoelectrodynamics ElectronsandElectromagneticFields SingleMoleculeChemistry inNanometer-ScaleStructures andPhysics Editor:H.Nejo AnIntroduction ByC.Wang,C.Bai SingleOrganicNanoparticles Editors:H.Masuhara,H.Nakanishi, AtomicForceMicroscopy,Scanning K.Sasaki NearfieldOpticalMicroscopy andNanoscratching EpitaxyofNanostructures Application ByV.A.Shchukin,N.N.Ledentsovand toRoughandNaturalSurfaces D.Bimberg ByG.Kaupp AppliedScanningProbeMethodsI AppliedScanningProbeMethodsII Editors:B.Bhushan,H.Fuchs, ScanningProbeMicroscopy S.Hosaka Techniques Editors:B.Bhushan,H.Fuchs Nanostructures TheoryandModeling AppliedScanningProbeMethodsIII ByC.DelerueandM.Lannoo Characterization Editors:B.Bhushan,H.Fuchs NanoscaleCharacterisation ofFerroelectricMaterials AppliedScanningProbeMethodsIV ScanningProbeMicroscopyApproach IndustrialApplications Editors:M.AlexeandA.Gruverman Editors:B.Bhushan,H.Fuchs Bharat Bhushan Harald Fuchs (Eds.) Applied Scanning Probe Methods III Characterization With268Figures Including2ColorFigures 123 Editors: ProfessorBharatBhushan NanotribologyLaboratoryforInformationStorageandMEMS/NEMS(NLIM) 650AckermanRoad,Suite255,TheOhioStateUniversity Columbus,OH43202-1107,USA e-mail:[email protected] ProfessorDr.HaraldFuchs CenterforNanotechnology(CeNTech)andInstituteofPhysics UniversityofMünster,GievenbeckerWeg11,48149Münster,Germany e-mail:[email protected] SeriesEditors: ProfessorDr.PhaedonAvouris IBMResearchDivision,NanometerScaleScience&Technology ThomasJ.WatsonResearchCenter,P.O.Box218 YorktownHeights,NY10598,USA ProfessorBharatBhushan NanotribologyLaboratoryforInformationStorageandMEMS/NEMS(NLIM) 650AckermanRoad,Suite255,TheOhioStateUniversity Columbus,OH43202-1107,USA ProfessorDr.,Dres.h.c.KlausvonKlitzing Max-Planck-InstitutfürFestkörperforschung,Heisenbergstrasse1 70569Stuttgart,Germany ProfessorHiroyukiSakaki UniversityofTokyo,InstituteofIndustrialScience,4-6-1Komaba,Meguro-ku Tokyo153-8505,Japan ProfessorDr.RolandWiesendanger InstitutfürAngewandtePhysik,UniversitätHamburg,Jungiusstrasse11 20355Hamburg,Germany DOI 10.1007/b137427 ISSN 1434-4904 ISBN-10 3-540-26909-6 SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-26909-0 SpringerBerlinHeidelbergNewYork LibraryofCongressControlNumber:2003059049 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialisconcerned, specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,reproduction onmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationorpartsthereof ispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrent version,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliabletoprosecution undertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia. springer.com ©Springer-VerlagBerlinHeidelberg2006 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and applicationcontainedinthisbook.Ineveryindividualcasetheusermustchecksuchinformationbyconsulting therelevantliterature. Typesettingandproduction:LE-TEXJelonek,Schmidt&VöcklerGbR,Leipzig Coverdesign:design&production,Heidelberg Printedonacid-freepaper 2/3100/YL-543210 Foreword The Nobel Prize of 1986 on Scan- ning Tunneling Microscopy signa- ledanewerainimaging.Thescan- ning probes emerged as a new ins- trument for imaging with a preci- sion sufficient to delineate single atoms. Atfirstthereweretwo–the ScanningTunnelingMicroscope,or STM,andtheAtomicForceMicro- scope, or AFM. The STM relies on electrons tunneling between tip and sample whereas the AFM depends on the force acting on the tip when itwasplacednearthesample.These were quickly followed by the Ma- gneticForceMicroscope,MFM,and the Electrostatic Force Microscope, EFM.TheMFMwillimageasinglemagneticbitwithfeaturesassmallas10nm. WiththeEFMonecanmonitorthechargeofasingleelectron.Prof.PaulHansma atSantaBarbaraopenedthedoorevenwiderwhenhewasabletoimagebiological objects in aqueous environments. At this point the sluice gates were opened and amultitudeofdifferentinstrumentsappeared. There are significant differences between the Scanning Probe Microscopes or SPM, and others such as the Scanning Electron Microscope or SEM. The probe microscopes do not requirepreparation ofthe sample and they operate in ambient atmosphere, whereas, the SEM must operate in a vacuum environment and the sample must be cross-sectioned to expose the proper surface. However, the SEM canrecord3Dimageandmovies,featuresthatarenotavailablewiththescanning probes. TheNearFieldOpticalMicroscopeorNSOMisalsomemberofthisfamily.At thistimetheinstrumentsuffersfromtwolimitations;1)mostoftheopticalenergy islost as ittraverses thecut-offregionofthetapered fiberand 2)theresolution is insufficient for many purposes. We are confident that NSOM’s with a reasonable opticalthroughputandaresolutionof10nmwillsoonappear.TheSNOMwillthen enterthemainstreamofscanningprobes. VI Foreword In the Harmonic Force Microscope or HFM, the cantilever is driven at the resonantfrequencywiththeamplitudeadjustedsothatthetipimpactsthesampleon eachcycle. Theforcesbetweentipandsamplegeneratemultipleharmonicsinthe motionofthecantilever.Thestrengthoftheseharmonicscanbeusedtocharacterize thephysicalpropertiesofthesurface. Itis interesting tonotethat this technology has spawned devices ofadifferent kind.Inoneinstance,thetipisfunctionalizedinawaythatallowstheattachmentof asingleprotein.Withdrawingthetipfromasurfacestretchestheattachedmolecule andmeasurestheelasticpropertiesofsingleproteinmolecules.Inanotherthesurface tensiononthesurfaceofthecantileverismodifiedwithaself-assembledmonolayer ofmoleculessuchasthiols.Theslightbendingofthebeamiseasilydetectedwith the components developed for use in the scanning probes. This system is used to detectthepresencenotonlyofthemonomolecularlayersbutalsoofsinglemolecules attachedtotheinitialself-assembledmonolayer. Theextensivematerialinthisfieldmeansthatthevarietyoftopicsislargerthan canbeaccommodatedinfourvolumes.TheEditors,Profs.BhushanandFuchs,must havegreatpowersofpersuasionfortheyhavedonearemarkablejobincollecting this set of paper in a relatively short period of time. The collection will become amilestoneinthefieldofscanningprobes. c.f.quate LelandT.EdwardsProfessor(Research)ofEngineering StanfordUniversity Stanford,California Co-inventerofAFMin1985 Preface The rapidly increasing activities in nanoscience and nanotechnology supported by sizable national programs has led to a variety of efforts in the development and understandingofscanningprobetechniquesaswellastheirapplicationstoindustrial andmedicalenvironments.Beyondimaging,scanningprobetechniquesrepresenting the eyes of nanotechnology allows us to investigate surfaces and interfaces close to surfaces at the nanometer scale and below, thus providing information about structure,mechanical,electronic,andmagneticproperties.Itbecameapparentduring thecollectionphaseofVol.Iin2003thatmanymoreactivitiesexistwhichdeserve presentation. Therefore,thisthreevolumeset waspreparedinordertodisplay the wide breadth of this field and also to provide an excellent compendium for recent developments in this area. The response of colleagues and research groups being askedtocontributehasbeenverypositive,suchthatwedecided,togetherwiththe publisher,torapidlymoveonintheseareas.Itbecamepossibletocollectexcellent contributionsdisplayingfirsthandinformationfromleadinglaboratoriesworldwide. ThepresentvolumesII–IVcoverthreemainareas:scanningprobemicroscopy (SPM)techniques (Vol.II);characterization (basicaspects,research,Vol.III);and industrialapplications(Vol.IV). VolumeIIincludesoverviewsonsensortechnologybasedonSPMprobes,high harmonic dynamic force microscopy, scanning ion conduction microscopy, spin polarizedSTM,dynamicforcemicroscopyandspectroscopy,quantitativenanome- chanical measurements in biology, scanning micro deformation microscopy, elec- trostaticforceandforcegradientmicroscopyandnearfieldopticalmicroscopy.This volumealsoincludesacontributiononnearfieldprobemethodssuchasthescanning focus ion beam technique which is an extremely valuable tool for nanofabrication includingscanningprobes. VolumeIIIincludes theapplication ofscanning probemethods forthecharac- terization of different materials, mainly in the research stage, such as applications of SPM on living cells at high resolution, macromolecular dynamics, organic su- pramolecularstructuresunderUHVconditions,STSonorganicandinorganiclow dimensional systems, and ferroelectric materials, morphological and tribological characterizationofroughsurfaces,AFMforcontactandwearsimulation,analysis offullerenelikenanoparticlesandapplicationsinthemagnetictapeindustry. Themorerelevantindustrialapplications aredescribed inVol.IV,whichdeals withscanningprobelithographyforchemical, biological andengineeringapplica- tions, nanofabrication with self-assembled monolayers by scanned probe lithogra- phy,fabricationofnanometerscalestructuresbylocaloxidation,templateeffectsof VIII Preface molecularassemblies,microfabricatedcantileverarrays,nanothermomechanicsand applicationsofheatedatomicforcemicroscopecantilevers. Certainly,thedistinctionbetweenbasicresearchfieldsofscanningprobetech- niques and the applications in industry are not sharp, as becomes apparent in the distributionoftheindividualarticlesinthedifferentpartsofthesevolumes.Onthe otherhand,thisclearlyreflectsanextremelyactiveresearchfieldwhichstrengthens thecooperationbetweennanotechnologyandnanoscience. Thesuccessoftheseriesissolelybasedontheeffortsandthehugeamountof workdonebytheauthors.Wegratefullyacknowledgetheirexcellentcontributions inatimelymannerwhichhelpstoinformscientistsinresearchandindustryabout latest achievements in scanning probe methods. We also would like to thank Dr. MarionHertel,SeniorEditorChemistry,andMrs.BeateSiekofSpringerVerlagfor theircontinuoussupport,withoutwhichthisvolumecouldnevermakeitefficiently tomarket. January,2006 Prof.BharatBhushan,USA Prof.HaraldFuchs,Germany Contents–VolumeIII 12 AtomicForceMicroscopyinNanomedicine DessyNikova,TobiasLange,HansOberleithner, HermannSchillers,AndreasEbner,PeterHinterdorfer . . . . . . . 1 12.1 AFMinBiologicalSciences . . . . . . . . . . . . . . . . . . . . . 1 12.2 PlasmaMembranePreparationforAFMImaging. . . . . . . . . . 4 12.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 12.2.2 PlasmaMembranePreparation . . . . . . . . . . . . . . . . . . . . 5 12.2.3 AtomicForceMicroscopy . . . . . . . . . . . . . . . . . . . . . . 7 12.2.4 MolecularVolumeMeasurementsofMembraneProteins. . . . . . 7 12.2.5 AFMImaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 12.3 AFMImagingofCFTRinOocyteMembranes . . . . . . . . . . . 10 12.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 12.3.2 DoestheCFTRFormFunctionalAssemblies? . . . . . . . . . . . 11 12.3.3 TwoCFTRsareBetterThanOne. . . . . . . . . . . . . . . . . . . 13 12.4 SingleAntibody–CFTRRecognitionImaging. . . . . . . . . . . . 16 12.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 12.4.2 TetheringofAntibodiestoAFMTips . . . . . . . . . . . . . . . . 17 12.4.3 AFMImagingandRecognition. . . . . . . . . . . . . . . . . . . . 17 12.4.4 ASingleAntibodySeesaSingleCFTR . . . . . . . . . . . . . . . 17 12.5 SingleCellElasticity:ProbingforDiseases . . . . . . . . . . . . . 19 12.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 12.5.2 Force–MappingAFM . . . . . . . . . . . . . . . . . . . . . . . . . 20 12.5.3 CanOneProteinChangeCellElasticity? . . . . . . . . . . . . . . 21 12.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 X Contents–VolumeIII 13 ScanningProbeMicroscopy: FromLivingCellstotheSubatomicRange IlleC.Gebeshuber,ManfredDrack,FriedrichAumayr, HannspeterWinter,FriedrichFranek . . . . . . . . . . . . . . . . . 27 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 13.2 CellsInVivoasExemplifiedbyDiatoms . . . . . . . . . . . . . . 28 13.2.1 IntroductiontoDiatoms. . . . . . . . . . . . . . . . . . . . . . . . 28 13.2.2 SPMofDiatoms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 13.3 InteractionofLargeOrganicMolecules . . . . . . . . . . . . . . . 33 13.4 NanodefectsonAtomicallyFlatSurfaces . . . . . . . . . . . . . . 37 13.4.1 IonBombardmentofHighlyOrientedPyrolyticGraphite(HOPG) 38 13.4.2 BombardmentofSingleCrystalInsulatorswithMultichargedIons 42 13.5 SubatomicFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . 45 13.5.1 AtomOrbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 13.5.2 SingleElectronSpinDetectionwithAFMandSTM . . . . . . . . 47 13.6 ConclusionsandOutlook . . . . . . . . . . . . . . . . . . . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 14 SurfaceCharacterizationandAdhesionandFrictionProperties ofHydrophobicLeafSurfacesandNanopatternedPolymers forSuperhydrophobicSurfaces ZacharyBurton,BharatBhushan . . . . . . . . . . . . . . . . . . 55 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 14.2 ExperimentalDetails . . . . . . . . . . . . . . . . . . . . . . . . . 58 14.2.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 14.2.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 14.2.3 RoughnessFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 14.2.4 TestMatrixforNanopatternedPolymers. . . . . . . . . . . . . . . 62 14.3 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . 63 14.3.1 HydrophobicLeafSurfaces. . . . . . . . . . . . . . . . . . . . . . 64 14.3.2 NanopatternedPolymers . . . . . . . . . . . . . . . . . . . . . . . 74 14.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 15 ProbingMacromolecularDynamicsandtheInfluence ofFiniteSizeEffects ScottSills,RenéM.Overney . . . . . . . . . . . . . . . . . . . . . 83 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84