Emerging Trends in Mechatronics Aydin Azizi Editor Applied Complex Flow Applications of Complex Flows and CFD Emerging Trends in Mechatronics SeriesEditor AydinAzizi,Oxford,UK Aydin Azizi Editor Applied Complex Flow Applications of Complex Flows and CFD Editor AydinAzizi SchoolofEngineering,Computing andMathematics OxfordBrookesUniversity Oxford,UK ISSN 2731-4855 ISSN 2731-4863 (electronic) EmergingTrendsinMechatronics ISBN 978-981-19-7745-9 ISBN 978-981-19-7746-6 (eBook) https://doi.org/10.1007/978-981-19-7746-6 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SingaporePteLtd.2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Most fluids exhibit a complex behaviour that is directly linked to their stress- deformationrelationship.Whethertheaforementionedrelationissimplynonlinear orlinearbutcombinedwithanexternalforce(thermal,chemical,magneticoretc.), theliquidsthatarebeingdealtwitharecollectivelyclassedas“ComplexFluids”. This book is aimed to present improved numerical techniques and applied computer-aidedsimulationsasapartofemergingtrendsinmechatronicsinallareas relatedtocomplexfluids,withaparticularfocusonusingacombinationofmodelling, theory,andsimulationtostudysystemsthatarecomplexduetotherheologyoffluids (i.e.,ceramicpastes,polymersolutionsandmelts,colloidalsuspensions,emulsions, foams, mico-/nanofluids, etc.) and multiphysics phenomena in which the interac- tionsofvariouseffects(thermal,chemical,electric,magnetic,ormechanical)lead tocomplexdynamics.Theareaofapplicationsspansaroundmaterissalsprocessing, manufacturing, and biology. In the following, a brief overview of each chapter is presented. Oxford,UK AydinAzizi v Contents ModelingHemodynamicsofRotaryBloodPumpsandPredicting thePotentialRisks ................................................. 1 LeonardoN.Rossato,JonathanKusner,andFarhadR.Nezami Microfluidic-IntegratedBiosensors .................................. 21 FatemehShahbazi, MasoudJabbari, MohammadNasrEsfahani, andAmirKeshmiri DropletMicrofluidics:AMultiphaseSystem ......................... 43 MaryamFatehifar,AlistairRevell,andMasoudJabbari SubjectSpecificModellingofAorticFlows ........................... 69 AminDeyranlou,AlistairRevell,andAmirKeshmiri 3DPrintingofPolymerComposites ................................. 107 HamidNareiandMasoudJabbari MagnetorheologicalFluids ......................................... 125 HesamKhajehsaeid,EhsanAkbari,andMasoudJabbari CeramicManufacturingforGreenEnergyApplications ............... 149 MasoudJabbari, HesamKhajehsaeid, MohammadSouri, andMohammadNasrEsfahani RheologyandCureKineticsofModifiedandNon-modifiedResin Systems ........................................................... 169 HatimAlotaibi,ConstantinosSoutis,andMasoudJabbari vii Modeling Hemodynamics of Rotary Blood Pumps and Predicting the Potential Risks LeonardoN.Rossato,JonathanKusner,andFarhadR.Nezami Abstract Theglobalburdenofcardiovasculardiseaseisimmense.Withinthisbroad categoryofdiseases,heartfailureisrecognizedasamajorcontributortobothadverse patienteventsandhealthcarespending.Aswesternpopulationsage,epidemiologic dataprojectssignificantincreasesintheprevalenceofheartfailure.Thegapbetween thosewithend-stageheartfailureandtheavailabilityofhearttransplantscontinuesto widen,compellingthetransitionofmechanicalsupportsolutions,initiallydeveloped asabridgetotransplanttherapies,todestinationtherapiesforthousandsofpatients eachyear.Unfortunately,patientsreceivingthesedevicescontinuetobeplaguedbya rangeofadverseeventsrelatedtoincompletelyoptimizedblood–deviceinteractions impactinghemolysisandthrombosis.Bloodpumps,theprincipalcomponentofsuch assistdevices,arethefocusofongoingstudyasattemptsaremadetooptimizetheir performance and minimize any associated risks. Fortunately, with recent advance- mentsincomputationalpowerandsimulationmethods,suchascomputationalfluid dynamics(CFD),reliableapproacheshaveemergedtoassessthehemodynamicsof blood pumps and explore their hydraulic, hemolytic, and thrombolytic challenges. Thesemethodsobserveseveralcomplexpropertiesandinteractionsthatoccurwithin blood pumps, including the rheological properties of blood as well as the multi- componentmotionofthepumpimpeller.Thischapterinitiallyfocusesonpreparing CFD frameworks for modeling rotary blood pumps, from geometry creation and meshingthroughmoreadvancedmethodsofbloodmodeling,includingturbulence modelimplementation.Thisisfollowedbyapresentationofseveralapproachesused tovalidatenumericalmodelsincludinginvitroexperimentsandtheuseofestablished parametric benchmarks. Finally, we discuss how to compose available methods to quantitatetheriskofhemolysisandthrombosiswithinrotarybloodpumps. B L.N.Rossato·F.R.Nezami( ) ThoracicandCardiacSurgeryDivision,DepartmentofSurgery,BrighamandWomen’sHospital, HarvardMedicalSchool,Boston,MA,USA e-mail:[email protected] L.N.Rossato e-mail:[email protected] J.Kusner DepartmentofMedicine,DukeUniversitySchoolofMedicine,Durham,NC,USA e-mail:[email protected] ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2023 1 A.Azizi(ed.),AppliedComplexFlow,EmergingTrendsinMechatronics, https://doi.org/10.1007/978-981-19-7746-6_1 2 L.N.Rossatoetal. 1 Introduction Cardiovascular diseases remain one of modern medicine’s most significant chal- lenges,routinelytoppingthelistofglobalcausesofdeathinadults[1].Aspopula- tions age, the prevalence of heart disease increases. Specifically, the prevalence of heartfailure(HF),oncethoughttobeonthedecline[2],hasbeenre-evaluatedwith newdatanotonlyshowingittobeincreasing,butalsoassociatedwithadevastating diseaseburdenthatisstraininghealthcaresystemsglobally[3].IntheUnitedStates (US) alone, more than 6.2 million patients have a diagnosis of HF [4], driving an associatedannualmortalityrateof380,000deaths[4]and$30billioninhealthcare spending each year [5]. This disease burden is expected to grow steeply such that by 2030 the cost of HF-related healthcare in the US is projected to be $70 billion annually[5].Despitethisspending,survivalratesofHFpatientsremainalarmingly low,withestimates,forthosemanagedinthecommunity,of80%atoneyearfrom diagnosis,whichfallsto50%atfiveyears[6,7].Evenwithadvancesinmedications andhealthcaredelivery,hearttransplantation(HT)remainsanimportanttherapeutic optionforpatientswithend-stageHF. The prevalence of end-stage HF has consistently exceeded the capacity of HT. Unfortunately, as the prevalence of HF, including end-stage HF, has increased, the annual volume of HT remains stagnant at around 3000 transplants annually in the US [8, 9]. Due to this epidemiologic mismatch, ventricular assist devices (VAD), although initially developed as bridge-to-transplant (BTT) therapies for patients awaiting HT, are necessarily becoming destination therapies (DT). For patientsreceivingVADtoday,nearly50%areindicatedasDT,26%constituteBTT, while the remaining 24% are used in bridge-to-decision, bridge-to-candidacy, and bridge-to-recoveryscenarios[10]. Many solutions to advanced and end-stage HF are being pursued, including gene therapies, improving logistics and technics for HT, xenotransplantation, and mechanical circulatory support. For the foreseeable future, VAD will remain an important therapeutic option for patients with end-stage HF. The medical commu- nity’s experience with VADs continues to expand, with greater than 2500 devices newlyimplantedeachyear[10].VADsareassociatedwithsystemicimprovementsas totalbodycirculationisre-established[11].Thisisreflectedinannualizedsurvival, withVADpatientsintheUSexperiencingone-yearsurvivalof81and70%attwo years [10]. Despite these encouraging survival figures, these patients experience highratesofVAD-relatedadverseevents(AEs),includingcomplicationsrelatedto infection,bleeding,andclotting[12].Improvedunderstandingoftissue-devicerela- tionships and blood circulation through VAD devices are critical in reducing AEs andimprovingsurvivalinpatientswithVAD. ThemostcriticalandcomplexcomponentofVADisthebloodpump,whichis principallycharacterizedbytheactuationmethodintotwomaincategories:displace- mentpumpsandrotarybloodpumps.Thischapterwilladdressrotarybloodpumps aloneastheyareassociatedwithbetterclinicaloutcomesandaremorecommonly implanted. In addition, rotary pumps have higher power efficiency, allowing for ModelingHemodynamicsofRotaryBloodPumpsandPredicting… 3 smallerdeviceprofilesandsimplersurgicalimplantation.Easeofimplantationand superiordeviceperformancehavedriventhereal-worldutilizationofrotarypumps overdisplacementpumps. Rotary pumps transfer the kinetic energy into the bloodstream as they achieve physiologiccardiacoutputs.Excellenthydraulicperformanceisneededtobalance this introduction of energy while minimizing damage to the blood and supplied organs. The study of blood–device compatibility in VAD interrogates this balance withafocusonreducinghemolysis(thedestructionofredbloodcells)andthrom- bosis(bloodclotting).BothhemolysisandthrombosisinVADareassociatedwith significantcomplicationsthatdrivemorbidityandmortalityinpatientswhorelyon thesedevices. Although relevant to all patients, blood–device compatibility is critical to the increasing segment of patients receiving DT VAD. In addition to biological and biochemical aspects of such compatibility, the mechanical design and hemody- namicperformanceofpumpssignificantlyimpactdevicedurabilityandtheratesof AE.Numericalmodels,suchascomputationalfluiddynamics(CFD),havebecome fundamental tools for designing and optimizing mechanical circulatory support pumps. Computational methods represent a cost-effective and ethical set of tools thatprovideuniqueinsightsintothecomplexfluiddynamicsofVADs.Thesetools enabletime-resolvedquantificationofimportantfluiddynamicparametersrelatedto blooddamageandhydraulicperformance.CFDanalysisisinstrumentalincharacter- izingcomplexturbulencefeatures,suchasrecirculationandstagnationzonesthatare flowpatternsimplicatedinhemolysisandthrombosis[13,14].Significantincreases incomputationalpowerpairedwithimprovedmodelsofhumanphysiologyforward the use of CFD for the study, development, and optimization of mechanical circu- latorysupportpumpsandunderstandingtheirrelationshipwithhumanphysiology post-implantation. This chapter will overview how CFD models are leveraged to characterize the characterization of the hemolytic, thrombotic, and hydraulic potential of rotary blood pumps. The first section will discuss the process and components of devel- opingaCFDsimulation,includingmeshgenerationandgoverningequationsrelated to pump hemodynamics. Following that, we will explain the process and signifi- cance of modeling the rheological properties of blood, how to numerically induce pumpimpellermotion,andhowtoproperlyaccountfortheeffectsofturbulencein bloodpumps.Finally,wewillintroducecomputationalapproachestoquantifyblood damageintheformsofhemolysisandthrombosis. 4 L.N.Rossatoetal. 2 HemodynamicsModelingUsingCFD 2.1 TypesofRotaryBloodPumps Rotary pumps are classified according to the positioning of the outlet(s) and flow orientation. In centrifugal pumps, the outlet is positioned tangentially at the end of the pump housing, whereby the impeller rotation linearly accelerates the blood flow. As a result, such pumps are generally characterized by a high ratio between pressureheadandrotationspeed,reducingthehemolyticpotentialofthepumpdue tolowerblooddamagelevelsthanotherpumps.Furthermore,duetothegeometryof therotor,centrifugalpumpscanmakeuseofmagneticorhydrodynamiclevitating bearing suspension systems to minimize the potential risk for pump thrombosis. Finally,thereductioninstagnationzones,commonlyfoundnearimpellerbearings, increasestheoveralldurabilityofthisvarietyofpumps(Fig.1). Inaxialpumps,boththeimpellerandtheoutletarecollinear,resultinginlinear androtationalpropulsionoftheflow.Thesepumpstendtooperateathighspeedsto supplythereducedpressurehead;consequently,theyaremorelikelytoinduceblood damage.Furthermore,axialpumpsrequirestationaryguidevanes,whichhavedirect contactbetweenbearingsandimpeller,aggravatingtheirhemolyticandthrombotic potential and accelerating pump wear. Thus, axial pumps tend to have a shorter servicelifeascomparedtocentrifugalpumps,withanaveragedurabilityoflessthan fiveyears.Anadvantageofaxialpumpsistheirsmallersizewhichconfersgreater energyefficiency,renderingthemmoresuitableforpediatricapplications. Fig.1 Essentialcomponentsof(a)acentrifugalbloodpumpand(b)anaxialflowbloodpump. Picturesareadaptedfrom[15]withpermissionfromTrendsinBiomaterialsandArtificialOrgans