ebook img

Applications of environmental aquatic chemistry: a practical guide PDF

442 Pages·2008·7.02 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applications of environmental aquatic chemistry: a practical guide

Second Edition Applications of Environmental Aquatic Chemistry A Practical Guide Eugene R. Weiner Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business (cid:1)2007byTaylor&FrancisGroup,LLC. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2008 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-0-8493-9066-1 (Hardcover) This book contains information obtained from authentic and highly regarded sources Reason- able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The Authors and Publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Weiner, Eugene R. Applications of environmental aquatic chemistry : a practical guide / Eugene R. Weiner. -- 2nd ed. p. cm. Rev. ed. of: Applications of environmental chemistry / Eugene R. Weiner. 2000. Includes bibliographical references and index. ISBN 978-0-8493-9066-1 (alk. paper) 1. Environmental chemistry. 2. Water quality. I. Weiner, Eugene R. Applications of environmental chemistry. II. Title. TD193.W45 2007 628.1’68--dc22 2007048068 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com (cid:1)2007byTaylor&FrancisGroup,LLC. Contents Preface totheSecond Edition Preface totheFirst Edition Author Chapter1 Water Quality 1.1 DefiningEnvironmentalWater Quality 1.1.1 Water-Use Classificationsand Water Quality Standards 1.1.2 Water Quality ClassificationsandStandards forNatural Waters 1.1.3 Setting NumericalWater Quality Standards 1.1.4 Typical Water-UseClassifications 1.1.4.1 Recreational 1.1.4.2 Aquatic Life 1.1.4.3 Agriculture 1.1.4.4 Domestic Water Supply 1.1.4.5 Wetlands 1.1.4.6 Groundwater 1.1.5 StayingUp-to-DatewithStandards andOtherRegulations 1.2 Sources ofWater Impurities 1.2.1 Natural Sources 1.2.2 Human-Caused Sources 1.3 Measuring Impurities 1.3.1 What Impurities Are Present? 1.3.2 How MuchofEachImpurity IsPresent? 1.3.3 WorkingwithConcentrations 1.3.4 Molesand Equivalents 1.3.4.1 Working with EquivalentWeights 1.3.5 Case HistoryExample 1.3.6 How DoImpurities Influence Water Quality? Exercises Chapter2 Contaminant Behavior inthe Environment: BasicPrinciples 2.1 Behavior ofContaminantsin Natural Waters 2.1.1 Important Properties ofPollutants 2.1.2 Important Properties ofWater andSoil 2.2 What Are theFates ofDifferent Pollutants? 2.3 ProcessesThatRemove Pollutants from Water 2.3.1 Natural Attenuation (cid:1)2007byTaylor&FrancisGroup,LLC. 2.3.2 TransportProcesses 2.3.3 Environmental Chemical Reactions 2.3.4 Biological Processes 2.4 Major Contaminant Groups and Natural Pathways forTheir Removal from Water 2.4.1 Metals 2.4.2 Chlorinated Pesticides 2.4.3 HalogenatedAliphatic Hydrocarbons 2.4.4 FuelHydrocarbons 2.4.5 Inorganic NonmetalSpecies 2.5 Chemicaland PhysicalReactionsin theWater Environment 2.6 Partitioning Behavior ofPollutants 2.6.1 Partitioning from a Diesel OilSpill 2.7 Intermolecular Forces 2.7.1 Temperature Dependent Phase Changes 2.7.2 Volatility, Solubility, andSorption 2.7.3 Predicting Relative Attractive Forces 2.8 Origins of Intermolecular Forces: Electronegativities, ChemicalBonds, and Molecular Geometry 2.8.1 Chemical Bonds 2.8.2 Chemical Bond Dipole Moments 2.8.3 Molecular Geometryand Molecular Polarity 2.8.4 Examples of Nonpolar Molecules 2.8.5 Examples of Polar Molecules 2.8.6 The Nature ofIntermolecular Attractions 2.8.7 Comparative Strengths of Intermolecular Attractions 2.9 Solubilityand Intermolecular Attractions Exercises Chapter 3 Major Water QualityParameters andApplications 3.1 Interactionsamong Water QualityParameters 3.2 pH 3.2.1 Background 3.2.2 Defining pH 3.2.3 Acid-Base Reactions 3.2.4 Importance ofpH 3.2.5 Measuring pH 3.2.6 Water QualityCriteria and Standards forpH 3.3 Oxidation–Reduction Potential 3.3.1 Background 3.4 Carbon Dioxide,Bicarbonate,and Carbonate 3.4.1 Background 3.4.2 Solubilityof CO in Water 2 3.4.3 Soil CO 2 (cid:1)2007byTaylor&FrancisGroup,LLC. 3.5 Acidit y and Alka linity 3.5.1 Background 3.5.2 Acidity 3.5.3 Alkalinity 3.5.4 Importance of Alkalinity 3.5.5 Water Quality Criteria and Standards forAlkalinity 3.5.6 Calculating Alkalinity 3.5.7 Calculating Changesin Alkalinity,Carbonate,and pH 3.6 Hardness 3.6.1 Background 3.6.2 Calculating Hardness 3.6.3 Importance of Hardness 3.7 DissolvedOxygen 3.7.1 Background 3.8 Biological OxygenDemand andChemical OxygenDemand 3.8.1 Background 3.8.2 BOD 5 3.8.3 BOD Calculation 3.8.4 COD Calculation 3.9 Nitrogen:Ammonia, Nitrite, and Nitrate 3.9.1 Background 3.9.2 Nitrogen Cycle 3.9.3 Ammonia=Ammonium Ion 3.9.4 Water Quality Criteria and Standards forAmmonia 3.9.5 Nitrite and Nitrate 3.9.6 Water Quality Criteria and Standards forNitrate 3.9.7 Methodsfor RemovingNitrogen from Wastewater 3.9.7.1 Air-StrippingAmmonia 3.9.7.2 Nitrification–Denitrification 3.9.7.3 BreakpointChlorination 3.9.7.4 Ammonium IonExchange 3.9.7.5 Biosynthesis 3.10 Sulfide and Hydrogen Sulfide 3.10.1 Background 3.10.1.1 Formation ofH S inDetention Ponds,Wetlands, 2 andSewers 3.10.1.2 Typical Water Quality Criteria and Standards forH S 2 3.10.2 Case Study 3.10.2.1 Odors ofBiological Origin inWater (Mostly Hydrogen Sulfide and Ammonia) 3.10.2.2 Environmental Chemistry ofHydrogenSulfide 3.10.2.3 Chemical Control of Odors 3.10.2.4 pHcontrol (cid:1)2007byTaylor&FrancisGroup,LLC. 3.10.2.5 Oxidation 3.10.2.6 Eliminate Reducing Conditions Caused by Decomposing Organic Matter 3.10.2.7 Sorptionto ActivatedCharcoal 3.11 Phosphorus 3.11.1 Background 3.11.2 Important Usesfor Phosphorus 3.11.3 PhosphorousCycle 3.11.4 Mobility in theEnvironment 3.11.5 PhosphorousCompounds 3.11.6 Removal of DissolvedPhosphate 3.12 Solids (Total,Suspended,and Dissolved) 3.12.1 Background 3.12.2 TDSandSalinity 3.12.3 Specific Conductivity andTDS 3.12.4 TDSTestfor Analytical Reliability 3.13 Temperature Exercises Reference Chapter 4 Behavior of Metal Species in theNatural Environment 4.1 Metals inWater 4.1.1 Background 4.1.2 Mobility of Metals intheWater Environment 4.1.3 General Behavior of DissolvedMetalsin Water 4.1.3.1 Hydrolysis Reactions 4.1.3.2 Hydrated Metalsas Acids 4.1.4 Influence ofpHonthe Solubilityof Metals 4.1.5 Influence ofRedoxPotential on theSolubility of Metals 4.1.5.1 Redox-Sensitive Metals: Cr, Cu, Hg, Fe, Mn 4.1.5.2 Redox-Insensitive Metals: Al, Ba, Cd, Pb, Ni, Zn 4.1.5.3 Redox-Sensitive Metalloids: As, Se 4.2 Metal Water QualityStandards 4.3 Case Study1 4.3.1 Treatment ofTraceMetalsin Urban Stormwater Runoff 4.3.2 Behavior of Common Stormwater Pollutants under Oxidizing andReducing Conditions 4.4 Case Study2 4.4.1 Acid Rock Drainage 4.4.1.1 SummaryofAcid Formation in Acid RockDrainage 4.4.1.2 Non-iron MetalSulfides DoNot Generate Acidity 4.4.1.3 Acid-BasePotential of Soil 4.4.1.4 Determining the Acid-Base Potential (cid:1)2007byTaylor&FrancisGroup,LLC. 4.5 Case Study 3 4.5.1 Identifying Metal LossandGainMechanismsin aStream Exercises References Chapter5 Soil, Groundwater, andSubsurface Contamination 5.1 Nature ofSoils 5.1.1 Soil Formation 5.1.1.1 Physical Weathering 5.1.1.2 Chemical Weathering 5.1.1.3 Secondary Mineral Formation 5.1.1.4 Rolesof Plants and Soil Organisms 5.2 Soil Profiles 5.2.1 Soil Horizons 5.2.2 SuccessiveSteps inthe Typical Developmentof aSoil and Its Profile (Pedogenesis) 5.3 Organic Matter inSoil 5.3.1 Humic Substances 5.3.2 Some Properties ofHumicMaterials 5.3.2.1 Binding toDissolved Species 5.3.2.2 LightAbsorption 5.4 Soil Zones 5.4.1 Air inSoil 5.5 Contaminants Become Distributed inWater, Soil, and Air 5.5.1 Volatilization 5.5.2 Sorption 5.6 Partition Coefficients 5.6.1 Air–Water Partition Coefficient (Henry’sLaw) 5.6.2 Soil–Water Partition Coefficient 5.6.3 Determining K Experimentally d 5.6.4 Role ofSoil Organic Matter 5.6.5 Octanol–Water Partition Coefficient, K ow 5.6.6 EstimatingK UsingMeasured Solubilityor K d ow 5.7 Mobilityof Contaminants inthe Subsurface 5.7.1 RetardationFactor 5.7.2 Effect of Biodegradationon EffectiveRetardation Factor 5.7.3 AModel forSorptionand Retardation 5.7.4 Soil Properties 5.8 Particulate Transportin Groundwater: Colloids 5.8.1 Colloid ParticleSize and Surface Area 5.8.2 Particle TransportProperties 5.8.3 Electrical Charges onColloids andSoil Surfaces 5.8.3.1 Electrical DoubleLayer 5.8.3.2 Adsorption and Coagulation (cid:1)2007byTaylor&FrancisGroup,LLC. 5.9 Case Study: ClearingMuddy Ponds 5.9.1 Pilot JarTests 5.9.1.1 Jar TestProcedure with Alum Coagulant 5.9.1.2 Jar TestProcedure with Gypsum Coagulant Exercises References Chapter 6 General Properties of Nonaqueous PhaseLiquids andthe Behavior ofLight Nonaqueous Phase Liquidsin theSubsurface 6.1 Types andProperties of Nonaqueous PhaseLiquids 6.2 General Characteristics of Petroleum Liquids, theMost Common LNAPL 6.2.1 Types ofPetroleum Products 6.2.2 Gasoline 6.2.3 Middle Distillates 6.2.4 Heavier FuelOils andLubricating Oils 6.3 Behavior of PetroleumHydrocarbons in theSubsurface 6.3.1 Soil Zones and Pore Space 6.3.2 Partitioning of Light Nonaqueous PhaseLiquids intheSubsurface 6.3.3 Processes of SubsurfaceMigration 6.3.4 Petroleum Mobility Through Soils 6.3.5 Behavior of LNAPLinSoils and Groundwater 6.3.6 Summary: Behavior of Spilled LNAPL 6.3.7 Weathering ofSubsurface Contaminants 6.3.8 Petroleum Mobility and Solubility 6.4 Formation ofPetroleum ContaminationPlumes 6.4.1 Dissolved Contaminant Plume 6.4.2 Vapor Contaminant Plume 6.5 Estimating the Amount of LNAPLFree Product in theSubsurface 6.5.1 HowLNAPLLayerThickness inthe SubsurfaceAffects LNAPL LayerThickness ina Well 6.5.1.1 Effect ofSoil Texture on LNAPLinthe Subsurface and inWells 6.5.1.2 Effect ofWater TableFluctuationson LNAPL in theSubsurface andin Wells 6.5.1.3 Effect ofWater TableFluctuationson LNAPL Measurements inWells 6.6 Estimating the Amount of ResidualLNAPLImmobilized intheSubsurface 6.6.1 Subsurface Partitioning Lociof LNAPLFuels 6.7 ChemicalFingerprinting ofLNAPLs 6.7.1 First Steps in Chemical Fingerprinting of Fuel Hydrocarbons 6.7.2 Identifying FuelTypes (cid:1)2007byTaylor&FrancisGroup,LLC. 6.7.3 Age-Dating Fuel Spills 6.7.3.1 Gasoline 6.7.3.2 Changes inBTEX Ratios Measuredin Groundwater 6.7.3.3 Diesel Fuel 6.8 Simulated Distillation Curves and Carbon Number Distribution Curves References Chapter7 Behavior ofDenseNonaqueous Phase Liquidsin theSubsurface 7.1 DNAPLProperties 7.2 DNAPLFree Product Mobility 7.2.1 DNAPLinthe Vadose Zone 7.2.2 DNAPLatthe Water Table 7.2.3 DNAPLinthe SaturatedZone 7.3 Testingfor thePresence of DNAPL 7.3.1 Contaminant Concentrations in Groundwater and Soil That Indicate theProximity of DNAPL 7.3.2 Calculation Methodfor AssessingResidual DNAPLinSoil 7.4 Polychlorinated Biphenyls 7.4.1 Background 7.4.2 Environmental Behavior 7.4.3 Analysisof PCBs 7.4.4 Case Study: Mistaken Identification of PCBCompounds References Chapter8 Biodegradation and Bioremediation ofLNAPLs and DNAPLs 8.1 Biodegradationand Bioremediation 8.2 Basic Requirements forBiodegradation 8.3 BiodegradationProcesses 8.3.1 Case Study 8.3.1.1 Passive(Intrinsic)BioremediationofFuelLNAPLs: CaliforniaSurvey 8.4 Natural Aerobic Biodegradation ofNAPLHydrocarbons 8.5 Determining theExtentof Bioremediation of LNAPL 8.5.1 Using ChemicalIndicators of theRate ofIntrinsic Bioremediation 8.5.2 Hydrocarbon Contaminant Indicator 8.5.3 ElectronAcceptor Indicators 8.5.4 DissolvedOxygen Indicator 8.5.5 Nitrate Plus Nitrite DenitrificationIndicator 8.5.6 MetalReduction Indicators:Manganese (IV) toManganese (II) and Iron (III)to Iron (II) 8.5.7 Sulfate Reduction Indicator 8.5.8 Methanogenesis(Methane Formation)Indicator (cid:1)2007byTaylor&FrancisGroup,LLC. 8.5.9 Redox Potential andAlkalinity as Biodegradation Indicators 8.5.9.1 Using Redox Potentials toLocateAnaerobic Biodegradationwithin thePlume 8.5.9.2 Using Alkalinity toLocateAnaerobic Biodegradation withinthe Plume 8.6 Bioremediation of Chlorinated DNAPLs 8.6.1 ReductiveDechlorinationof Chlorinated Ethenes 8.6.2 ReductiveDechlorinationof Chlorinated Ethanes 8.6.3 Case Study: Using Biodegradation Pathways forSource Identification References Chapter 9 Behavior of Radionuclidesin theWater and Soil Environment 9.1 Introduction 9.2 Radionuclides 9.2.1 AFew BasicPrinciples ofChemistry 9.2.1.1 Matter and Atoms 9.2.1.2 Elements 9.2.2 Properties ofan AtomicNucleus 9.2.2.1 Nuclear Notation 9.2.3 Isotopes 9.2.4 Nuclear Forces 9.2.5 Quarks, Leptons,andGluons 9.2.6 Radioactivity 9.2.6.1 a Emission 9.2.6.2 b Emission 9.2.6.3 g Emission 9.2.7 Balancing NuclearEquations 9.2.8 Rates of RadioactiveDecay 9.2.8.1 Half-Life 9.2.9 Radioactive DecaySeries 9.2.10 Naturally Occurring Radionuclides 9.3 Emissions and TheirProperties 9.4 Units of RadioactivityandAbsorbed Radiation 9.4.1 Activity 9.4.2 Absorbed Dose 9.4.3 Dose Equivalent 9.4.4 Unit Conversion Tables 9.4.4.1 Converting between Units of Dose Equivalent and Units of Activity(Rems toPicocuries) 9.5 Naturally Occurring Radioisotopes inthe Environment 9.5.1 Case Study: Radionuclidesin Public Water Supplies 9.5.2 Uranium 9.5.2.1 Uranium Geology 9.5.2.2 Uranium inWater (cid:1)2007byTaylor&FrancisGroup,LLC.

Description:
Professionals and students who come from disciplines other than chemistry need a concise, yet reliable guide that explains key concepts in environmental chemistry, from the fundamental science to the necessary calculations for applying them. Updated and reorganized, Applications of Environmental Aqu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.