TESIS DOCTORAL Application of novel technologies for the development of next generation MR compatible PET inserts Autor: Georgios Konstantinou Director: Juan José Vaquero López DEPARTAMENTO Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid y Hospital General Universitario Gregorio Marañon Leganés, 22 de Junio 2017 ( a entregar en la Oficina de Posgrado, una vez nombrado el Tribunal evaluador , para preparar el documento para la defensa de la tesis) TESIS DOCTORAL Application of novel technologies for the development of next generation MR compatible PET inserts Autor: Georgios Konstantinou Director: Juan José Vaquero López Firma del Tribunal Calificador: Firma Presidente: Andrés Santos Vocal: Giancarlo Sportelli Secretario: Luis Hernández Corporales Calificación: Leganés 22 de Junio 2017 Application of novel technologies for the development of next generation MR compatible PET inserts Multimodal imaging integrating Positron Emission Tomography and Magnetic Resonance Imaging (PET/MRI) has professed advantages as compared to other available combinations, allowing both functional and structural information to be acquired with very high precision and repeatability. However, it has yet to be adopted as the standard for experimental and clinical applications, due to a variety of reasons mainly related to system cost and flexibility. A hopeful existing approach of silicon photodetector-based MR compatible PET inserts comprised by very thin PET devices that can be inserted in the MRI bore, has been pioneered, without disrupting the market as expected. Technological solutions that exist and can make this type of inserts lighter, cost-effective and more adaptable to the application need to be researched further. In this context, we expand the study of sub-surface laser engraving (SSLE) for scintillators used for PET. Through acquiring, measuring and calibrating the use of a SSLE setting we study the effect of different engraving configurations on detection characteristics of the scintillation light by the photosensors. We demonstrate that apart from cost-effectiveness and ease of application, SSLE treated scintillators have similar spatial resolution and superior sensitivity and packing fraction as compared to standard pixelated arrays, allowing for shorter crystals to be used. Flexibility of design is benchmarked and adoption of honeycomb architecture due to geometrical advantages is proposed. Furthermore, a variety of depth-of-interaction (DoI) designs are engraved and studied, greatly enhancing applicability in small field-of-view tomographs, such as the intended inserts. To adapt to this need, a novel approach for multi-layer DoI characterization has been developed and is demonstrated. Apart from crystal treatment, considerations on signal transmission and processing are addressed. A double time-over-threshold (ToT) method is proposed, using the statistics of noise in order to enhance precision. This method is tested and linearity results demonstrate applicability for multiplexed readout designs. A study on analog optical wireless communication (aOWC) techniques is also performed and proof of concept results presented. Finally, a ToT readout firmware architecture, intended for low-cost FPGAs, has been developed and is described. By addressing the potential development, applicability and merits of a range of transdisciplinary solutions, we demonstrate that with these techniques it is possible to construct lighter, smaller, lower consumption, cost-effective MRI compatible PET inserts. Those designs can make PET/MRI multimodality the dominant clinical and experimental imaging approach, enhancing researcher and physician insight to the mysteries of life. Doctorate Dissertation i Prolegomena La combinación multimodal de Tomografía por Emisión de Positrones con la Imagen de Resonancia Magnética (PET/MRI, de sus siglas en inglés) tiene clara ventajas en comparación con otras técnicas multimodales actualmente disponibles, dada su capacidad para registrar información funcional e información estructural con mucha precisión y repetibilidad. Sin embargo, esta técnica no acaba de penetrar en la práctica clínica debido en gran parte a alto coste. Las investigaciones que persiguen mejorar el desarrollo de insertos de PET basados en fotodetectores de silicio y compatibles con MRI, aunque han sido intensas y han generado soluciones ingeniosas, todavía no han conseguido encontrar las soluciones que necesita la industria. Sin embargo, existen opciones todavía sin explorar que podrían ayudar a evolucionar este tipo de insertos consiguiendo dispositivos más ligeros, baratos y con mejores prestaciones. Esta tesis profundiza en el estudio de grabación sub-superficie con láser (SSLE) para el diseño de los cristales centelladores usados en los sistemas PET. Para ello hemos caracterizado, medido y calibrado un procedimiento SSLE, y a continuación hemos estudiado el efecto que tienen sobre las especificaciones del detector las diferentes configuraciones del grabado. Demostramos que además de la rentabilidad y facilidad de uso de esta técnica, los centelladores SSLE tienen resolución espacial equivalente y sensibilidad y fracción de empaquetamiento superiores a las matrices de centelleo convencionales, lo que posibilita utilizar cristales más cortos para conseguir la misma sensibilidad. Estos diseños también permiten medir la profundidad de la interacción (DoI), lo que facilita el uso de estos diseños en tomógrafos de radio pequeño, como pueden ser los sistemas preclínicos, los dedicados (cabeza o mama) o los insertos para MRI. Además de trabajar en el tratamiento de cristal de centelleo, hemos considerado nuevas aproximaciones al procesamiento y transmisión de la señal. Proponemos un método innovador de doble medida de tiempo sobre el umbral (ToT) que integra una evaluación de la estadística del ruido con el propósito de mejorar la precisión. El método se ha validado y los resultados demuestran su viabilidad de uso incluso en conjuntos de señales multiplexadas. Un estudio de las técnicas de comunicación óptica analógica e inalámbrica (aOWC) ha permitido el desarrollo de una nueva propuesta para comunicar las señales del detector PET insertado en el gantry a un el procesador de señal externo, técnica que se ha validado en un demostrador. Finalmente, se ha propuesto y demostrado una nueva arquitectura de análisis de señal ToT implementada en firmware en FPGAs de bajo coste. La concepción y desarrollo de estas ideas, así como la evaluación de los méritos de las diferentes soluciones propuestas, demuestran que con estas técnicas es posible construir insertos de PET compatibles con sistemas MRI, que serán más ligeros y compactos, con un reducido consumo y menor coste. De esta forma se contribuye a que la técnica multimodal PET/MRI pueda penetrar en la clínica, mejorando la comprensión que médicos e investigadores puedan alcanzar en su estudio de los misterios de la vida. ii Georgios Konstantinou Application of novel technologies for the development of next generation MR compatible PET inserts - Doctorate Dissertation iii Prolegomena Greek saying Writing a PhD thesis has been the most diversely challenging task I ever undertook. my gratitude to the people that accompanied me in this journey, from those that provided the direct help and work collaboration, to those that were able to support me and relieve the corresponding feelings and anxiety. First, I would like to thank my supervisor, Juan José Vaquero Lopez, for giving me the opportunity to join his team and mentoring me not only in how to build nuclear medicine detectors, but also in fighting for my ideas and believing in myself; furthermore, for the great experience of living in the wonderful city of Madrid, the best city in the world. Along with him, I would like to thank the group of the laboratorio de imagen médica (LIM), from the Hospital General Universitario Gregorio Marañón. I hope that they, under the strain and transformation the current economic and social situation has added, will manage to continue creating great science and develop great scientists. Particularly the people that were there when I joined, I would like to thank for helping me land in their city in such a graceful manner. I would also like to thank the people of the Departamento de Bioingeniería e Ingeniería Aeroespacial of Universidad Carlos III de Madrid, especially Miguel, Guillermo, Angélica, Carlos, Santi, Ana, Asier, Sara and Tom, for their support and endless energy, so necessary when mine was running out (quite often). Along with them, the whole group of Friday beers at el Puerto, for giving me the much cherished insight in Spanish cuisine and culture. Of course, I also would like to voice my appreciation to the international colleagues from the INFIERI collaboration who, apart from securing the funding that I used for the PhD, shared the experience of the numerous workshops, visits and secondments; in particular, the groups of Pisa, both in INFN (Giancarlo, Fabrizio) and SSSA (Ernesto, Giulio) that supported the secondments undertaken. Moreover, our coordinator Aurore, for the impossible job of organizing such a diverse and broad collection of individuals; and more than everything the other ESRs, especially Stamatis, Eleytheria, Wajahat, Michele and Mateo, for making me feel that I am not alone in this madness. iv Georgios Konstantinou Application of novel technologies for the development of next generation MR compatible PET inserts On a personal level, I would like to thank my great and greatly supportive family, my parents Dionisis and Filia and my sister Thalia. In a broader scope aunts and uncles Kaiti, Tonia, Gerasimos, Nitsa and cousins Mitsos, Maria and Katerina who have been on my side all this time. Most importantly, my companion in life Masha Reva, who taught me how it is really worth trying and becoming better every single day and has been there to share the biggest and strongest happiness and most difficult melancholies. Furthermore, all the people who were there when I needed some solace from the toils of life. From Madrid Hara and Stathis, Tania, Laura and Giannis and from around the world Foivos, Vaggelis, Vasilis, Panos and Elena, Nikos, Lefteris and Eliza, Matias and Naz, Valerio, Samir, Maya, Spyros, Thanos and Eirini, Fotis, Manolis, Ilias... countless kilometers will keep separating us from each other, but the feelings are strong and true and when we meet, it is as if we never stopped living in the unchangeable refuge of our common past. Finally, I would like to thank all the innumerable great people that I have had the luck to meet, discuss, learn from and look up to; the only reason that allows me to not relinquish the hope that one day, this world will be a better place. This thesis is the contribution I was able to make for that goal, during the last three years. Doctorate Dissertation v Prolegomena Chapter 1: Introduction and Hypothesis A. Medical imaging ............................................................................................................................. 1 B. Imaging approaches ...................................................................................................................... 2 C. Multimodal imaging ...................................................................................................................... 3 D. The chase for PET/MR ................................................................................................................... 4 E. Objective: What could make PET/MR the standard multimodal approach? ......................... 6 F. Hypothesis ...................................................................................................................................... 7 G. Thesis outline .................................................................................................................................. 8 References ......................................................................................................................................................... 9 Chapter 2: PET basics A. A Historical perspective .................................................................................................................. 11 B. + Radiotracers: Physics and application ...................................................................................... 12 C. detection using scintillators ......................................................................................................... 15 D. Detection of scintillation light ......................................................................................................... 17 E. PET detector specifications ............................................................................................................. 20 F. Small animal scanners and PET inserts ......................................................................................... 24 References ....................................................................................................................................................... 25 Chapter 3: A feasibility study of Sub-Surface Laser Engraving for scintillators I. Introduction ........................................................................................................................................... 29 II. Materials and Methods ........................................................................................................................ 32 A. SSLE process...................................................................................................................................... 32 B. Study and introduction of a cost-effective system ...................................................................... 33 C. BK-7 testing and photometric experiments .................................................................................. 35 D. Simulations ........................................................................................................................................ 36 III. Results ................................................................................................................................................ 41 A. Engraving results .............................................................................................................................. 41 B. Photometric results .......................................................................................................................... 42 C. Simulations results ........................................................................................................................... 45 IV. Conclusions ....................................................................................................................................... 46 V. References .............................................................................................................................................. 47 Chapter 4: Verification of Sub-Surface Laser Engraving for scintillators I. Introduction ...................................................................................................................................... 49 II. Materials And Methods ................................................................................................................... 50 A. Experimental setup ...................................................................................................................... 50 B. Design verification ....................................................................................................................... 51 III. Results............................................................................................................................................ 53 A. First engravings of scintillators .................................................................................................. 53 B. Spatial resolution results ............................................................................................................. 55 C. Energy Results .............................................................................................................................. 57 vi Georgios Konstantinou
Description: