CClleevveellaanndd SSttaattee UUnniivveerrssiittyy EEnnggaaggeeddSScchhoollaarrsshhiipp@@CCSSUU ETD Archive 2010 AApppplliiccaattiioonn ooff MMuullttiippllee IInntteelllliiggeennccee TThheeoorryy ttoo aann EE--LLeeaarrnniinngg TTeecchhnnoollooggyy AAcccceeppttaannccee MMooddeell Alfred J. Degennaro Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive Part of the Business Commons HHooww ddooeess aacccceessss ttoo tthhiiss wwoorrkk bbeenneefifitt yyoouu?? LLeett uuss kknnooww!! RReeccoommmmeennddeedd CCiittaattiioonn Degennaro, Alfred J., "Application of Multiple Intelligence Theory to an E-Learning Technology Acceptance Model" (2010). ETD Archive. 77. https://engagedscholarship.csuohio.edu/etdarchive/77 This Dissertation is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. APPLICATION OFMULTIPLE INTELLIGENCETHEORY TO AN ELEARNING TECHNOLOGYACCEPTANCE MODEL ALFRED J.DEGENNARO Bachelor ofArtsin Mathematics& Philosophy ClevelandStateUniversity December, 1981 MasterofArtsin Mathematics ClevelandStateUniversity December, 1986 MasterofArtsinComputerand InformationSystems ClevelandStateUniversity June,1987 submittedin partialfulfillmentofrequirementforthedegree DOCTOR OFBUSINESS ADMINISTRATION IN INFORMATION SYSTEMS atthe CLEVELANDSTATE UNIVERSITY MAY,2010 Thisdissertationhas been approved fortheDepartment ofINFORMATION SCIENCES andtheCollegeofGraduateStudies by DissertationChairperson,Dr. SantoshMisra Department& Date Dr. VictorMatos Department& Date Dr. SridharMadhavaram Department& Date Dr. Susan Rakow Department& Date Inlovingmemoryofmy grandfather, whosawthepotentialinmeandplanted theseed. Itakepauseto acknowledgethatnoneofthiscould havebeen accomplishedwithoutthe supportofmyfamilyand theprayers ofmymotherand father. Iam especiallythankful formywife, Sarah, who providedtheopportunityand motivationto bringthiswork to closure. Iextendthisgratitudetomy committeeand especiallyDr. SantoshMisraand his infinitepatience. APPLICATION OFMULTIPLE INTELLIGENCETHEORY TO AN ELEARNING TECHNOLOGYACCEPTANCE MODEL ALFRED J.DEGENNARO ABSTRACT Withthespeedofdoingbusinessontherise,employeesmustlearntoadapttonew technologies and improved performance expectations without losing productivity or timeontask. Students looking toenter theworkforce mustunderstand that education does not end withgraduation; rather the expectation isthat everyone willbe lifelong learners. To meet the challenge, education providers are looking for alternative ways to bring education to the student and enhance the learning experience. With e-learning, students enjoy flexiblescheduling, businesses canrealize improvements inworkforce skills while reducing education expenditures (i.e. improved Return On Investment, ROI) and education providers extend their campuses at minimal cost. E-learning is fastbecomingapreferredmethodofdeliveringqualityeducationanytime,anywhere. Educators, however, have mixed feelings on the subject. Many have embraced the new technology and report positive results. Others question the effectiveness of e-learning, pointingtothehighdropoutrateine-learning coursesandbiasintheliter- aturesupporting e-learning. Thecautiousareconcerned aboutrushinginonuncertain ground. Theyrecalltheadventoftelevisionandtheunmetpromisesofthattechnology withrespecttoeducation. Thepurposeofthisstudyistodevelopane-learningadoptionmodelthatisfirmly foundedineducation research(especially withrespecttolearning)coupled withwhat is understood about the diffusion and acceptance of (information) technology. The goalofdeveloping suchamodelistoidentify andpaircruciallearningcharacteristics v of students with the acceptance of the technology used to deliver educational content electronically so as to foster mastery learning. Students can use the results of this studytohelpdecidewhetherornottoenrollinane-learningcourseorwhatadditional strategies they may need to employ so as to maximize the experience. Businesses may benefit from an understanding of how to match the needs of their employees with appropriate criteria for selecting the most effective e-learning delivery system. Schools and colleges can use such a model to help minimize the dropout rate from distancelearning coursesandtopromoteoverallstudentsuccess. vi TABLE OFCONTENTS Page ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LIST OFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv CHAPTER I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 TrendsinDistanceLearning . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Faculty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.4 Academic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.5 Business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Controversy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 ThePurposeofthisStudy . . . . . . . . . . . . . . . . . . . . . . . 18 1.4 ContributionsofResearch . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 II LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Instructor/DeliveryAgent . . . . . . . . . . . . . . . . . . . . . . . 29 2.3 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Student . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 AcceptanceModels . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2 External Variables Related to e-Learning; An Extended Edu- cationalTAM . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.2.1 SelfEfficacy . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2.2 ComputerExperience . . . . . . . . . . . . . . . . . . 41 vii Chapter Page 2.4.2.3 Social InfluenceProcesses . . . . . . . . . . . . . . . 42 2.4.2.4 Culture . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.2.5 Gender . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.2.6 LearningStyleand MultipleIntelligences . . . . . . . 47 2.4.2.7 IntrinsicMotivations . . . . . . . . . . . . . . . . . . 50 2.4.2.8 ExtrinsicMotivations . . . . . . . . . . . . . . . . . . 51 2.4.2.9 Acceptance . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.5 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.6 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 III METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.1 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.2 SurveyInstruments . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.2.1 TAMSurvey . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.2.2 MultipleIntelligencesDevelopmentalAssessmentScales 79 3.3.3 DataCollection . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.4 DataAnalysisMethods . . . . . . . . . . . . . . . . . . . . . 83 3.3.4.1 RegressionAssumptions . . . . . . . . . . . . . . . . 85 3.3.4.2 LinearRelationship . . . . . . . . . . . . . . . . . . . 89 3.3.4.3 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.3.4.4 TestforHomogenityofVariance . . . . . . . . . . . . 91 3.3.4.5 CriteriaforSelecting Between CompetingModels . . 92 viii Chapter Page IV FINDINGS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . 94 4.1 AnalysisofFindings . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.1 TechnologyAcceptanceModel . . . . . . . . . . . . . . . . . 102 4.1.1.1 Relationship between Perceived Usefulness and Per- ceivedEaseofUse(PU ~ PEU) . . . . . . . . . . . . . 112 4.1.1.2 RelationshipbetweenAttitudeTowardUsingandPer- ceived Usefulness and Perceived Ease of Use (ATU ~ PU +PEU) . . . . . . . . . . . . . . . . . . . . . . . 122 4.1.1.3 RelationshipbetweenBehavioralIntentiontoUseand AttitudeToward Using(BIU ~ ATU) . . . . . . . . . . 134 4.1.2 MultipleIntelligencesDevelopmentalAssessmentScales(MI- DAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.1.3 RelationshipbetweentheTechnologyAcceptanceModeland MultipleIntelligences(TAM~ MIDAS) . . . . . . . . . . . . 148 4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 V CONCLUSIONS ANDRECOMMENDATIONS . . . . . . . . . . . . . . . 159 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 A CompiledTimeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 B Bloom’sTaxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 C elearning Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 D Factors from theLiterature . . . . . . . . . . . . . . . . . . . . . . . . . . 203 E Generations ofDistanceLearning . . . . . . . . . . . . . . . . . . . . . . . 207 F Learning Concepts andDomains . . . . . . . . . . . . . . . . . . . . . . . 211 G Learning Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 H MIDASProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 ix
Description: