ebook img

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer PDF

782 Pages·2018·80.879 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer

APPLICATION OF CONTROL VOLUME BASED FINITE ELEMENT METHOD (CVFEM) FOR NANOFLUID FLOW AND HEAT TRANSFER This pageintentionallyleftblank APPLICATION OF CONTROL VOLUME BASED FINITE ELEMENT METHOD (CVFEM) FOR NANOFLUID FLOW AND HEAT TRANSFER M S OHSEN HEIKHOLESLAMI DepartmentofMechanicalEngineering,BabolNoshirvaniUniversityofTechnology,Babol,IslamicRepublicofIran Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates Copyrightr2019ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformationaboutthe Publisher’spermissionspoliciesandourarrangementswithorganizationssuchastheCopyrightClearance CenterandtheCopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperiencebroaden ourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecome necessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusing anyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethods theyshouldbemindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhavea professionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeany liabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceor otherwise,orfromanyuseoroperationofanymethods,products,instructions,orideascontainedinthe materialherein. BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress ISBN:978-0-12-814152-6 ForInformationonallElsevierpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MatthewDeans AcquisitionEditor:SimonHolt EditorialProjectManager:JenifferPierce/JohnLeonard ProductionProjectManager:SruthiSatheesh CoverDesigner:HarrisGreg TypesetbyMPSLimited,Chennai,India Contents Biography ix 5.4 MHDNaturalConvectionofAl2O3-waterNanofluid ConsideringThermophoresisandBrownianMotion Preface xi Effects 110 References 123 1. Detailed Explanation of Control Volume-based 6. Nanofluid Forced and Mixed Convection Finite Element Method 1 Heat Transfer by Means of CVFEM 127 1.1 Introduction 1 6.1 Introduction 127 1.2 TheDiscretization:Grid,Mesh,andCloud 1 6.2 MagneticNanofluidMixedConvectionHeat 1.3 TheElementandtheInterpolationShapeFunctions 3 TransferTreatmentinthePresenceofVariable 1.4 RegionofSupportandControlVolume 4 MagneticField 127 1.5 DiscretizationandSolution 5 6.3 ForcedConvectionofNanofluidinaPorousLid References 9 DrivenEnclosureinthePresenceofLorentzForces 135 6.4 InfluenceofLorentzForcesonNanofluidFlowInside aPorousEnclosureWithMovingWall 144 2. Simulation of Vorticity Stream Function 6.5 Single-phaseModelSimulationofNanofluidForced Formulation by Means of CVFEM 15 ConvectionInsideaPermeableEnclosureWith 2.1 CVFEMStreamFunction-VorticitySolution SinusoidalWall 151 foraLidDrivenCavityFlow 15 References 158 2.2 CVFEMStreamFunction-VorticitySolutionfor NaturalConvection 20 References 30 7. Effect of Uniform Lorentz Forces on Nanofluid Flow Using CVFEM 163 3. Various Application of Nanofluid for Heat 7.1 Introduction 163 7.2 NanofluidFreeConvectionHeatTransferinan Transfer Augmentation 33 EnclosureBetweenaCircularandaSinusoidal 3.1 Introduction 33 CylinderinthePresenceofMagneticField 163 3.2 SimulationofNanofluidFlowandHeatTransfer 37 7.3 InfluenceofaMagneticFieldonFreeConvection References 63 inanInclinedHalf-annulusEnclosureFilledWith Cu-waterNanofluid 171 4. Single-phase Model for Nanofluid Free 7.4 MHDNanofluidConvectiveFlowinanInclined EnclosureWithSinusoidalWall 177 Convection Heat Transfer by Means of CVFEM 73 7.5 MHDNanofluidFlowinaCavityWithHeatFlux 4.1 Introduction 73 BoundaryCondition 187 4.2 NanofluidHydrothermalAnalysisinaComplex References 196 ShapedCavity 73 4.3 NaturalConvectionHeatTransferinaNanofluidFilled EnclosureWithEllipticInnerCylinder 77 8. Influence of Variable Lorentz Forces 4.4 NanofluidFreeConvectionHeatTransferinaTilted on Nanofluid Free Convection Using CVFEM 201 Cavity 87 References 94 8.1 Introduction 201 8.2 InfluenceofExternalVariableMagneticField onFerrofluidFlowandConvectiveHeatTransfer 201 5. Buongiorno Model for Nanofluid Treatment 8.3 FerrofluidFlowandHeatTransferinaSemiannulus Using CVFEM 99 EnclosureinthePresenceofThermalRadiation 207 5.1 Introduction 99 8.4 InfluenceofSpatiallyVariableMagneticField 5.2 BuongiornoModelforNanofluidFlowandHeat onFerrofluidFlowandHeatTransferConsidering TransferUsingHeatlineAnalysis 99 ConstantHeatFluxBoundaryCondition 218 5.3 Two-phaseModelforNanofluidNaturalConvection 8.5 EffectofSpaceDependentMagneticFieldonFree HeatTransfer 107 ConvectionofFe O -WaterNanofluid 229 3 4 v vi CONTENTS 8.6 NonuniformMagneticFieldEffectonNanofluid 11.3 FreeConvectionofNanofluidUndertheEffect HydrothermalTreatmentConsideringBrownian ofElectricFieldinaPorousEnclosure 379 MotionandThermophoresisEffects 236 11.4 NanofluidNaturalConvectionUndertheInfluence 8.7 ExternalMagneticSourceEffectonWaterBased ofCoulombForceinaPorousEnclosure 387 NanofluidConvectiveHeatTransfer 241 References 395 8.8 NanofluidTransportationinaCurvedCavity inthePresenceofMagneticSource 252 8.9 FerrofluidConvectiveHeatTransferUnder 12. Forced Convection of Nanofluid theInfluenceofExternalMagneticSource 260 in Existence of Electric Field Using CVFEM 399 8.10 NanofluidHydrothermalTreatmentinaCavity 12.1 Introduction 399 WithVariableMagneticField 273 12.2 EHDNanofluidForceConvectiveHeat 8.11 MagneticSourceImpactonMagneticNanofluid TransferConsideringElectricFieldDependent ConvectiveHeatTransfer 281 Viscosity 399 References 288 12.3 ElectrohydrodynamicNanofluidHydrothermal TreatmentinanEnclosureWithSinusoidalUpper Wall 405 9. Nanofluid Forced Convective Heat Transfer 12.4 EffectofElectricFieldonHydrothermalBehavior in Presence of Variable Magnetic Field Using ofNanofluidinaComplexGeometry 414 CVFEM 293 12.5 EffectofCoulombForcesonFe O -H2ONanofluid 3 4 9.1 Introduction 293 ThermalImprovement 419 9.2 EffectofNonuniformMagneticFieldonForced 12.6 ActiveMethodforNanofluidHeatTransfer ConvectionHeatTransferofFe3O4-WaterNanofluid 293 EnhancementbyMeansofEHD 427 9.3 MagneticNanofluidForcedConvectiveHeatTransfer References 437 inthePresenceofVariableMagneticFieldUsing Two-PhaseModel 298 9.4 ForcedConvectionHeatTransferinaSemiannulus 13. Darcy Model for Nanofluid Flow in a Porous UndertheInfluenceofaVariableMagneticField 304 Media by Means of CVFEM 441 9.5 FlowandConvectiveHeatTransferofaFerronanofluid 13.1 Introduction 441 inaDouble-SidedLid-DrivenCavityWithaWavy 13.2 MagnetohydrodynamicCuO-WaterNanofluid WallinthePresenceofaVariableMagneticField 312 inaPorousComplexShapedEnclosure 441 References 323 13.3 AnalysisofWater-BasedNanofluidFlowandHeat TransferDuetoMagneticFieldinaPorous 10. Influence of Shape Factor on Nanofluid Enclosure 447 13.4 MagnetohydrodynamicNanofluidConvection Heat Transfer Improvement Using CVFEM 327 inaPorousEnclosureConsideringHeatFlux 10.1 Introduction 327 BoundaryCondition 459 10.2 ForcedConvectionofNanofluidinthePresence 13.5 EffectofLorentzForcesonNanofluidFlow ofConstantMagneticFieldConsideringShape inaPorousCylinderConsideringDarcyModel 468 EffectsofNanoparticles 327 References 479 10.3 EffectofShapeFactoronFe O -WaterNanofluid 3 4 ForcedConvectioninthePresenceofExternal MagneticField 335 14. Non-Darcy Model for Nanofluid 10.4 MagneticSourceEffectonNanofluidFlowinPorous Hydrothermal Treatment in a Porous MediumConsideringVariousShapeofNanoparticles 343 10.5 MagnetohydrodynamicCuO-WaterTransportation Medium Using CVFEM 483 InsideaPorousCavityConsideringShapeFactor 14.1 Introduction 483 Effect 348 14.2 MHDNanofluidFreeConvectiveHeatTransfer 10.6 MagneticFieldInfluenceonCuO-H ONanofluid inaPorousTiltedEnclosure 483 2 ConvectiveFlowinaPermeableCavityConsidering 14.3 MagneticNanofluidFlowinaPorousCavity VariousShapesforNanoparticles 360 UsingCuONanoparticles 488 References 368 14.4 NanofluidTransportationinPorousMediaUnder theInfluenceofExternalMagneticSource 499 14.5 NanofluidConvectiveHeatTransferIntensification 11. Electrohydrodynamic Nanofluid Natural inaPorousCircularCylinder 513 Convection Using CVFEM 373 14.6 ConvectiveFlowofNanofluidInsideaLid-Driven 11.1 Introduction 373 PorousCavity 521 11.2 ElectrohydrodynamicFreeConvectionHeatTransfer 14.7 NanofluidHeatTransferinaPermeableEnclosure ofaNanofluidinaSemiannulusEnclosure inPresenceofVariableMagneticField 532 WithaSinusoidalWall 373 References 544 vii CONTENTS 15. Thermal Nonequilibrium Model for 18.2 EHDNanofluidFlowinaPermeableEnclosure Nanofluid Flow in a Porous Enclosure WithSinusoidalWall 649 18.3 EffectofShapeFactoronElectrohydrodynamic by Means of CVFEM 547 NanofluidFlowinaPorousMedium 655 15.1 Introduction 547 18.4 EffectofElectiveFieldonNanofluidFlow 15.2 SimulationofNanofluidFlowInsideaPorous inaPorousLidDrivenCavityinExistence EnclosureviaNonequilibriumModel 547 ofElectricField 662 15.3 NanofluidFreeConvectioninaPorousCavity References 670 ConsideringtheTwo-TemperatureModel 558 15.4 NanofluidFlowinaPorousSinusoidalCavity ConsideringThermalNonequilibriumModel 568 19. Nanofluid Heat Transfer Enhancement References 577 in Presence of Melting Surface Using CVFEM 675 19.1 Introduction 675 19.2 MeltingHeatTransferInfluenceonNanofluid 16. Nonuniform Magnetic Field Effect FlowInsideaCavityinthePresenceofaMagnetic on Nanofluid Convective Flow in a Porous Field 675 Cavity 581 19.3 SimulationofCuO-WaterNanofluidHeatTransfer 16.1 Introduction 581 EnhancementinthePresenceofaMeltingSurface 682 16.2 EffectofVariableMagneticFieldonNanofluid 19.4 CuO-WaterNanofluidMagnetohydrodynamic ConvectiveHeatTransferinaPorousCurved NaturalConvectionInsideaSinusoidalAnnulus Enclosure 581 inthePresenceofMeltingHeatTransfer 691 16.3 NanofluidNaturalConvectioninPorousMedia 19.5 MHDNanofluidNaturalConvectionInsideaHalf inthePresenceofaMagneticSource 589 AnnulusWithMeltingSurface 697 16.4 HeatTransferofFe O -WaterNanofluid References 704 3 4 inaPermeableMediumWithThermalRadiation 595 16.5 EffectofExternalMagneticSourceonFe O -H O 3 4 2 20. Nanofluid Convective Heat Transfer NanofluidBehaviorinaPermeableCavity Considering Magnetic Field Dependent (MFD) ConsideringShapeEffect 606 Viscosity by Means of CVFEM 707 References 620 20.1 Introduction 707 20.2 NaturalConvectionofMagneticNanofluid 17. Thermal Radiation Influence on Nanofluid ConsideringMFDViscosityEffect 707 Flow in a Porous Medium in the Presence 20.3 MagneticFieldInfluenceonNanofluidThermal RadiationinaCavityWithTiltedEllipticInner of Coulomb Forces Using CVFEM 623 Cylinder 713 17.1 Introduction 623 20.4 ThermalRadiationofFerrofluidinExistence 17.2 CombinedNaturalConvectionandRadiation ofLorentzForcesConsideringVariableViscosity 723 HeatTransferofNanofluidUndertheImpact 20.5 MagneticNanofluidNaturalConvectioninPresence ofElectricFieldinaPorousCavity 623 ofThermalRadiationConsideringVariableViscosity 733 17.3 NanofluidFreeConvectionUndertheInfluence 20.6 NumericalStudyoftheEffectofMagneticField ofanElectricFieldinaPorousWavyEnclosure 629 onFe O -WaterFerrofluidConvectionWith 17.4 EHDNanofluidFlowinaPorousMediumConsidering 3 4 ThermalRadiation 737 RadiationParameter 637 References 746 References 644 Nomenclature 751 18. Influence of Electric Field on Forced Convection of Nanofluid in a Porous Medium Appendix: A CVFEM Code for Lid by Means of CVFEM 649 Driven Cavity 753 18.1 Introduction 649 Index 761 This page intentionallyleftblank Biography MohsenSheikholeslamiKandelousi (M. Sheikholeslami) Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol,IslamicRepublic of Iran Dr. Mohsen Sheikholeslami works in the Department of Mechanical Engineering, Babol Noshirvani University of Technology, Iran. He is the head of renewable energy systems and nanofluid applications in the heat transfer laboratory, Babol Noshirvani University of Technology. His research interests include nanofluid, CFD, simulation, mesoscopic model- ing, nonlinear science, magnetohydrodynamic, ferrohydrodynamic, electrohydrodynamic, and heat exchangers. He haswrittenseveral papersand books invariousfields of mechan- ical engineering. He is also the first author of Applications of Nanofluid for Heat Transfer Enhancement, Application of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer, Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, and External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid, published by Elsevier. According to Thomson Reuters’ report (Clarivate Analytics), he was selected as the Web of ScienceHighly Cited Researcher(Top0.01%) in 2016 and2017. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.