ebook img

Appendix A Investigation of Suitable Soil Constitutive Models for 3-D Finite Element Studies of Live PDF

155 Pages·2010·6.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Appendix A Investigation of Suitable Soil Constitutive Models for 3-D Finite Element Studies of Live

Appendix A Investigation of Suitable Soil Constitutive Models for 3-D Finite Element Studies of Live Load Distribution Through Fills Onto Culverts National Cooperative Highway Research Program Project 15-29 Limited Use Document This Final Report is furnished only for review by members of the NCHRP project panel and is regarded as fully privileged. Dissemination of information included herein must be approved by the NCHRP. CNA Consulting Engineers Simpson, Gumpertz & Heger April 2009 Table of Contents 1. INTRODUCTION 1 2. REVIEW OF AVAILABLE SOIL MODELS 1 2.1 Linear Elastic 2 2.2 Elasto-Plastic 3 2.3 Stress-Dependent Models 6 2.3.1 Duncan-Selig Model 6 2.3.2 Hardening Soil Model (Plaxis) 10 2.4 Findings from Soil Model Evaluation 22 3. TWO-DIMENSIONAL MODELING OF CULVERTS 22 3.1 Modeled Structures 22 3.2 Material Models 23 3.2.1 Linear-Elastic Model 23 3.2.2 Mohr-Coulomb Model with Perfect Plasticity in Plaxis 23 3.2.3 Hardening-Soil Model in Plaxis 24 3.2.4 In-Situ Soil Material 24 3.2.5 Other Materials 24 3.3 Live Load 24 3.4 Finite Element Model 26 3.5 Results of 2D Analysis 35 3.5.1 Concrete Box 35 3.5.2 Concrete Pipe 44 3.5.3 Metal Pipe 49 3.5.4 Thermoplastic Pipe 54 3.5.5 Concrete Arch 59 3.5.6 Metal Arch 64 3.5.7 Summary of Results from 2D Preliminary Analyses 69 3.6 Effect of Interface Strength 71 3.7 Conclusion 81 4. THREE DIMENSIONAL MODELING OF CULVERTS 82 4.1 Comparison of Responses to Factored and Unfactored Live Loads 82 4.1.1 Introduction 82 4.1.2 Method of Approach 82 4.1.3 Results 83 4.1.3.1 HDPE Pipe in ABAQUS 83 4.1.3.2 Three-Sided Arch Top Culvert in CANDE 85 4.1.4 Conclusion 86 4.2 Selected Field Tests for 3D Analysis 86 4.2.1 NCHRP Project 12-45 86 4.2.2 Minnesota DOT Study 90 4.3 Three-Dimensional Analysis 93 4.3.1 General Information 93 4.3.2 Long-Span Concrete Arch Culvert 94 4.3.2.1 Finite Element Model 94 4.3.2.2 Materials 95 4.3.2.3 Loading and Boundary Condition 96 4.3.2.4 Results 97 4.3.3 Long-Span Metal Arch Culvert 101 NCHRP 15-29 Appendix A i 4.3.3.1 Finite Element Model 101 4.3.3.2 Materials 102 4.3.3.3 Loading and Boundary Condition 102 4.3.3.4 Results 102 4.3.4 60-in. Diameter HDPE Pipe 108 4.3.4.1 Finite Element Model 108 4.3.4.2 Materials 109 4.3.4.3 Loading and Boundary Condition 109 4.3.4.4 Results 111 4.3.5 Discussion 126 4.4 Comparison between the Mohr-Coulomb and Hardening-Soil Models in Three- Dimensional Analysis in PLAXIS 129 4.4.1 Method of Approach 130 4.4.2 Results 130 4.4.2.1 Metal Arch in Test 2 with 3 ft Cover 130 4.4.2.2 HDPE Pipe with A2 Backfill and 2.8 ft Cover 130 4.4.3 Conclusion 135 4.5 Three-Dimensional Analysis of Field Tests in ABAQUS 135 4.5.1 Introduction 135 4.5.2 Method of Approach 136 4.5.3 Validation of ABAQUS Model 139 4.5.4 Results 140 4.5.4.1 Metal Arch with 3 ft Cover 140 4.5.4.2 HDPE Pipe with A2 Backfill and 2.8 ft Cover 142 4.5.5 Conclusion 143 5. DISCUSSION 144 6. CONCLUSIONS AND RECOMMENDATIONS 145 7. REFERENCES 145 List of Tables Table 1—Elastic soil properties for Backfill (Selig, 1990) ............................................................. 3 Table 2—Vertical Stresses and Estimated Horizontal Stresses under Gravity and Corresponding Angle of Friction for SW85 ............................................................................................................ 6 Table 3—Parameters for Linear-Elastic and Mohr-Coulomb Models for SW85 ............................ 6 Table 4—Soil Properties of Backfill for Duncan-Selig Model (Selig, 1988) ................................... 9 Table 5—Input Parameters for Hardening-Soil Model for SW85, SW90, ML85, and CL85 ........ 15 Table 6—Structural Types and Cover Depths for 2D Analysis ................................................... 23 Table 7—Comparison of Bending Moments and Thrusts in Concrete Box Model ...................... 43 Table 8—Comparison of Bending Moments and Thrusts in Concrete Pipe Model ..................... 48 Table 9—Comparison of Bending Moments and Thrusts in Metal Pipe Model........................... 53 Table 10—Comparison of Bending Moments and Thrusts in Thermoplastic Pipe Model ........... 58 Table 11—Comparison of Bending Moments and Thrusts in Concrete Arch Model................... 63 Table 12—Comparison of Bending Moments and Thrusts in Metal Arch Model ........................ 68 Table 13—Ratios of Live Load Moments and Thrusts of Concrete Box ..................................... 69 Table 14—Ratios of Live Load Moments and Thrusts of Pipes with a Cover Depth of 2 ft ........ 70 Table 15—Ratios of Live Load Moments and Thrusts of Pipes with a Cover Depth of 6 ft ........ 70 Table 16—Ratios of Live Load Moments and Thrusts of Arches with a Cover Depth of 2 ft ...... 70 Table 17—Ratios of Live Load Moments and Thrusts of Arches with a Cover Depth of 6 ft ...... 70 NCHRP 15-29 Appendix A ii Table 18—Comparison of Bending Moments and Thrusts between Concrete Pipe Models with 50% and 100% Interface Strength (Mohr-Coulomb Soil Model) ................................................. 76 Table 19—Comparison of Bending Moments and Thrusts Load between Thermoplastic Pipe Models with 50% and 100% Interface Strength (Mohr-Coulomb Soil Model) ............................. 81 Table 20—Comparison of Structural Responses between Analyses with Factored and Unfactored Live Loads (HDPE Pipe, A2 Backfill) ........................................................................ 85 Table 21—Comparison of Structural Responses between Analyses (Hanson Arch) ................. 86 Table 22—Properties of Reinforced Concrete Culvert ................................................................ 88 Table 23—Properties of Structural Steel Plate and Culvert ........................................................ 88 Table 24—Properties of Type S HDPE Pipe .............................................................................. 91 Table 25—Average Trench Measurements for Test Pipes in the MNDOT Study ....................... 92 Table 26—Soil Properties Used for the 3D Analyses of Long-Span Arches .............................. 96 Table 27—Concrete Properties Used for the 3D Analyses of Long-Span Arches ...................... 96 Table 28—Vertical Displacements at Crown of Concrete Arch due to Live Loads ..................... 99 Table 29—Chord Extension at Height of 88 in. of Concrete Arch Culvert due to Live Loads ..... 99 Table 30—Thrusts at Base of Concrete Arch Culvert due to Live Loads ................................... 99 Table 31—Axial and Bending Modulus of Metal Arch in Circumferential and Longitudinal Directions (E=29,000 ksi) .......................................................................................................... 102 Table 32—Vertical Displacements at Crown of Metal Arch due to Live Loads ......................... 104 Table 33—Chord Extension at Height of 88 in. of Metal Arch Culvert due to Live Loads ......... 104 Table 34—Thrusts in Test 1 of Metal Arch Culvert due to Live Loads ...................................... 105 Table 35—Thrusts in Test 2 of Metal Arch Culvert due to Live Loads ...................................... 105 Table 36—Moments in Test 1 of Metal Arch Culvert due to Live Loads ................................... 106 Table 37—Moments in Test 2 of Metal Arch Culvert due to Live Loads ................................... 106 Table 38—Axial and Bending Modulus of HDPE Pipe in Circumferential and Longitudinal Directions (E=100,000 psi) ........................................................................................................ 109 Table 39—Soil Properties Used for the 3D Analyses of HDPE Pipes ...................................... 110 Table 40—Comparison of Vertical Displacements at Crown of HDPE Pipes under Heavy Truck .................................................................................................................................................. 125 Table 41—Comparison of Vertical Displacements at Crown of HDPE Pipes under Light Truck .................................................................................................................................................. 125 Table 42—Comparison of Diametrical Changes at Springline of HDPE Pipes under Heavy Truck .................................................................................................................................................. 125 Table 43—Comparison of Diametrical Changes at Springline of HDPE Pipes under Light Truck .................................................................................................................................................. 125 Table 44—Summary of Displacements under Wheel (Metal Arch, Test 2, 3 ft Cover) ............. 132 Table 45—Summary of Thrusts under Wheel (Metal Arch, Test 2, 3 ft Cover) ......................... 132 Table 46—Summary of Moments under Wheel (Metal Arch, Test 2, 3 ft Cover) ...................... 133 Table 47—Summary of Vertical Displacements under Wheel (HDPE Pipe, A2 Soil, 2.8 ft Cover) .................................................................................................................................................. 134 Table 48—Summary of Horizontal Chord Extensions under Wheel (HDPE Pipe, A2 Soil, 2.8 ft Cover) ....................................................................................................................................... 135 Table 49—Summary of Force Results (HDPE Pipe, A2 Soil, 2.8 ft Cover) .............................. 135 Table 50—Orthotropic Properties Used in ABAQUS Analyses ................................................ 137 Table 51—Orthotropic Stiffness Properties .............................................................................. 137 Table 52—Soil Porperties Used for Soft Haunch and Void Areas ............................................ 138 Table 53—Summary of Displacements from ABAQUS Analyses with Orthotropic Properties (Metal Arch, 3 ft Cover) ............................................................................................................. 141 Table 54—Summary of Displacements from ABAQUS Analyses with Orthotropic Properties (HDPE Pipe, A2 Backfill) ........................................................................................................... 143 List of Figures NCHRP 15-29 Appendix A iii Figure 1—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for SW85 in Deviatoric Loading of Triaxial Test .............................................................................................. 16 Figure 2—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for SW90 in Deviatoric Loading of Triaxial Test .............................................................................................. 17 Figure 3—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for ML85 in Deviatoric Loading of Triaxial Test .............................................................................................. 18 Figure 4—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for CL85 in Deviatoric Loading of Triaxial Test .............................................................................................. 19 Figure 5—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for SW85 in Oedometer Loading .................................................................................................................... 20 Figure 6—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for SW90 in Oedometer Loading .................................................................................................................... 20 Figure 7—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for ML85 in Oedometer Loading .................................................................................................................... 21 Figure 8—Comparison of Plaxis Hardening-Soil Model and Duncan-Selig Model for CL85 in Oedometer Loading .................................................................................................................... 21 Figure 9—Live Load per Unit Length of Culvert in 2D Analysis .................................................. 26 Figure 10—Conceptual Model for 2D Analysis of Pipes ............................................................. 27 Figure 11—Conceptual Model for 2D Analysis of Boxes ............................................................ 28 Figure 12—Conceptual Model for 2D Analysis of Arches ........................................................... 28 Figure 13—Finite Element Meshes of Concrete Box Model ....................................................... 29 Figure 14—Finite Element Meshes of Concrete Pipe Model ...................................................... 30 Figure 15—Finite Element Meshes of Metal Pipe Model ............................................................ 31 Figure 16—Finite Element Meshes of Plastic Pipe Model .......................................................... 32 Figure 17—Finite Element Meshes of Concrete Arch Model ...................................................... 33 Figure 18—Finite Element Meshes of Metal Arch Model ............................................................ 34 Figure 19—Deformation of Concrete Box due to Live Load ....................................................... 36 Figure 20—Bending Moments and Thrusts due to Live Load in Top Slab of Concrete Box Model (0 ft Cover) .................................................................................................................................. 37 Figure 21—Bending Moments and Thrusts due to Live Load in Right Wall of Concrete Box Model (0 ft Cover) ....................................................................................................................... 38 Figure 22—Bending Moments and Thrusts due to Live Load in Top Slab of Concrete Box Model (2 ft Cover) .................................................................................................................................. 39 Figure 23—Bending Moments and Thrusts due to Live Load in Right Wall of Concrete Box Model (2 ft Cover) ....................................................................................................................... 40 Figure 24—Bending Moments and Thrusts due to Live Load in Top Slab of Concrete Box Model (6 ft Cover) .................................................................................................................................. 41 Figure 25—Bending Moments and Thrusts due to Live Load in Right Wall of Concrete Box Model (6 ft Cover) ....................................................................................................................... 42 Figure 26—Deformation of Concrete Pipe due to Live Load ...................................................... 45 Figure 27—Bending Moments and Thrusts due to Live Load in Concrete Pipe Model (2 ft Cover) .................................................................................................................................................... 46 Figure 28—Bending Moments and Thrusts due to Live Load in Concrete Pipe Model (6 ft Cover) .................................................................................................................................................... 47 Figure 29—Deformation of Metal Pipe due to Live Load ............................................................ 50 Figure 30—Bending Moments and Thrusts due to Live Load in Metal Pipe Model (2 ft Cover) . 51 Figure 31—Bending Moments and Thrusts due to Live Load in Metal Pipe Model (6 ft Cover) . 52 Figure 32—Deformation of Thermoplastic Pipe due to Live Load .............................................. 55 Figure 33—Bending Moments and Thrusts due to Live Load in Thermoplastic Pipe Model (2 ft Cover) ......................................................................................................................................... 56 Figure 34—Bending Moments and Thrusts due to Live Load in Thermoplastic Pipe Model (6 ft Cover) ......................................................................................................................................... 57 NCHRP 15-29 Appendix A iv Figure 35—Deformation of Concrete Arch due to Live Load ...................................................... 60 Figure 36—Bending Moments and Thrusts due to Live Load in Concrete Arch Model (2 ft Cover) .................................................................................................................................................... 61 Figure 37—Bending Moments and Thrusts due to Live Load in Concrete Arch Model (6 ft Cover) .................................................................................................................................................... 62 Figure 38—Deformation of Metal Arch due to Live Load ............................................................ 65 Figure 39—Bending Moments and Thrusts due to Live Load in Metal Arch Model (2 ft Cover) . 66 Figure 40—Bending Moments and Thrusts due to Live Load in Metal Arch Model (6 ft Cover) . 67 Figure 41—Plastic Points in Soil Elements of Concrete Pipe Models with 50% and 100% Interface Strength (Mohr-Coulomb Soil Model, 2 ft Cover) ......................................................... 72 Figure 42—Plastic Points in Soil Elements of Concrete Pipe Models with 50% and 100% Interface Strength (Mohr-Coulomb Soil Model, 6 ft Cover) ......................................................... 73 Figure 43—Comparison of Bending Moments and Thrusts due to Live Load between Concrete Pipe Models with 50% and 100% Interface Strength (2 ft Cover) ............................................... 74 Figure 44—Comparison of Bending Moments and Thrusts due to Live Load between Concrete Pipe Models with 50% and 100% Interface Strength (6 ft Cover) ............................................... 75 Figure 45—Plastic Points in Soil Elements of Thermoplastic Pipe Models with 50% and 100% Interface Strength (Mohr-Coulomb Soil Model, 2 ft Cover) ......................................................... 77 Figure 46—Plastic Points in Soil Elements of Thermoplastic Pipe Models with 50% and 100% Interface Strength (Mohr-Coulomb Soil Model, 6 ft Cover) ......................................................... 78 Figure 47—Comparison of Bending Moments and Thrusts due to Live Load between Thermoplastic Pipe Models with 50% and 100% Interface Strength (2 ft Cover) ....................... 79 Figure 48—Comparison of Bending Moments and Thrusts due to Live Load between Thermoplastic Pipe Models with 50% and 100% Interface Strength (6 ft Cover) ....................... 80 Figure 49—Finite Element Model of Three-Sided Arch Top Culvert with 3 ft Cover ................... 83 Figure 50—Comparison of Vertical and Horizontal Displacements from Factored Live Load with 1.75 times those from Unfactored Live Load (HDPE Pipe, A2 Backfill) ...................................... 84 Figure 51—Comparison of Thrusts and Moments from Factored Live Load with 1.75 times those from Unfactored Live Load (HDPE Pipe, A2 Backfill) ................................................................. 84 Figure 52—Comparison of Thrusts and Moments from Factored Live Load with 1.75 times those from Unfactored Live Load (Hanson Arch) ................................................................................. 85 Figure 53—Test Setup of NCHRP Project 12-45 ........................................................................ 87 Figure 54—Instrumentation for Deformation in Concrete Culvert ............................................... 89 Figure 55—Instrumentation for Deformation in Metal Culvert ..................................................... 89 Figure 56—Cross Sections of HDPE Pipes: Type D and Type S ............................................... 91 Figure 57—Typical Installation of PE Pipe .................................................................................. 91 Figure 58—Live Load Vehicle in the MNDOT Study ................................................................... 92 Figure 59—Typical Test Pipe Instrumentation in the MNDOT Study .......................................... 93 Figure 60—Typical Dimensions of Finite Element Models of Long-Span Arch and HDPE Pipe 94 Figure 61—Finite Element Model of Concrete Arch Culvert with a Cover Depth of 3 ft.............. 95 Figure 62—Live Load Position in the 3D Analysis of Long-Span Arches ................................... 97 Figure 63—Deformed Shapes of Concrete Arch in the Plane of Wheel Loads (Effects of Live Loads only) ................................................................................................................................. 98 Figure 64—Displacements Due to Live Loads from the 3D Analyses of Concrete Arch Culvert 98 Figure 65—Thrusts and Moments due to Live Loads in the Plane of Wheel Loads from the 3D Analyses of Concrete Arch Culvert ............................................................................................. 99 Figure 66—Plastic Points in Soil Elements in the Plane of Wheel Loads in Concrete Arch Analysis ..................................................................................................................................... 100 Figure 67—Finite Element Model of Metal Arch Culvert with a Cover Depth of 3 ft ................. 101 Figure 68—Soft Element to Match Longitudinal Stiffness of Metal Arch .................................. 102 Figure 69—Deformed Shapes of Metal Arch in the Plane of Wheel Loads (Effects of Live Loads only) .......................................................................................................................................... 103 NCHRP 15-29 Appendix A v Figure 70—Displacements due to Live Loads from the 3D Analyses of Metal Arch Culvert .... 104 Figure 71—Thrusts and Moments due to Live Loads in the Plane of Wheel Loads from the 3D Analyses of Metal Arch Culvert ................................................................................................. 104 Figure 72—Plastic Points in Soil Elements in the Plane of Wheel Loads in Metal Arch Analysis .................................................................................................................................................. 107 Figure 73—Finite Element Model of HDPE Pipe Culvert for Pipe Run 9 .................................. 108 Figure 74—Soft Element to Match Longitudinal Stiffness of HDPE Pipe ................................. 109 Figure 75—Positions of Live Load Vehicle Axles in the 3D Analyses of HDPE Pipes.............. 111 Figure 76—Deformed Shapes of Pipe Run 1 due to Live Loads in the Plane of Wheel Loads (A- 1, 1.4 ft Cover) .......................................................................................................................... 113 Figure 77—Vertical Crown Displacements of Pipe Run 1 due to Live Loads ........................... 113 Figure 78—Horizontal Displacements of Pipe Run 1 due to Live Loads (A-1, 1.4 ft Cover) ..... 114 Figure 79—Thrusts of Pipe Run 1 due to Live Loads in the Plane of Wheel Loads ................. 114 Figure 80—Moments of Pipe Run 1 due to Live Loads in Plane of Wheel Loads .................... 114 Figure 81—Plastic Points in Soil Elements of Pipe Run 1 in the Plane of Wheel Loads .......... 115 Figure 82—Deformed Shapes of Pipe Run 9 due to Live Loads in the Plane of Wheel Loads (A- 1, 2.5 ft Cover) .......................................................................................................................... 116 Figure 83—Vertical Crown Displacements of Pipe Run 9 due to Live Loads ........................... 116 Figure 84—Horizontal Displacements of Pipe Run 9 Due to Live Loads .................................. 117 Figure 85—Thrusts of Pipe Run 9 Due to Live Loads in the Plane of Wheel Loads ................ 117 Figure 86—Moments of Pipe Run 9 Due to Live Loads in Plane of Wheel Loads .................... 117 Figure 87—Plastic Points in Soil Elements of Pipe Run 9 in the Plane of Wheel Loads .......... 118 Figure 88—Deformed Shapes of Pipe Run 3 due to Live Loads in the Plane of Wheel Loads (A- 2, 1.6 ft Cover) .......................................................................................................................... 119 Figure 89—Vertical Crown Displacements of Pipe Run 3 due to Live Loads ........................... 119 Figure 90—Horizontal Displacements of Pipe Run 3 due to Live Loads (A-2, 1.6 ft Cover) ..... 120 Figure 91—Thrusts of Pipe Run 3 due to Live Loads in the Plane of Wheel Loads (A-2, 1.6 ft Cover) ....................................................................................................................................... 120 Figure 92—Moments of Pipe Run 3 due to Live Loads in Plane of Wheel Loads .................... 120 Figure 93—Plastic Points in Soil Elements of Pipe Run 3 in the Plane of Wheel Loads .......... 121 Figure 94—Deformed Shapes of Pipe Run 7 due to Live Loads in the Plane of Wheel Loads (A- 2, 2.8 ft Cover) .......................................................................................................................... 122 Figure 95—Vertical Crown Displacements of Pipe Run 7 due to Live Loads (A-2, 2.8 ft Cover) .................................................................................................................................................. 122 Figure 96—Horizontal Displacements of Pipe Run 7 due to Live Loads (A-2, 2.8 ft Cover) ..... 123 Figure 97—Thrusts of Pipe Run 7 due to Live Loads in the Plane of Wheel Loads (A-2, 2.8 ft Cover) ....................................................................................................................................... 123 Figure 98—Moments of Pipe Run 7 due to Live Loads in Plane of Wheel Loads (A-2, 2.8 ft Cover) ....................................................................................................................................... 123 Figure 99—Plastic Points in Soil Elements of Pipe Run 7 in the Plane of Wheel Loads (A-2, 2.8 ft Cover) .................................................................................................................................... 124 Figure 100—Ratios of 3D Analysis Results to Field Test Data for Displacements of Concrete Arch ........................................................................................................................................... 128 Figure 101—Ratios of 3D Analysis Results to Field Test Data for Displacements of Metal Arch .................................................................................................................................................. 128 Figure 102—Ratios of 3D Analysis Results to Field Test Data for Displacements of HDPE Pipes .................................................................................................................................................. 129 Figure 15—Comparison of Displacements between Cases with Mohr-Coulomb and Hardening- Soil Models (Metal Arch, Test 2, 3 ft Cover) ............................................................................. 131 Figure 16—Comparison of Thrusts and Moments under Wheel between Cases with Mohr- Coulomb and Hardening-Soil Models (Metal Arch, Test 2, 3 ft Cover) ..................................... 132 NCHRP 15-29 Appendix A vi Figure 17—Comparison of Crown Vertical Displacements between Cases with Mohr-Coulomb and Hardening-Soil Models (HDPE Pipe, A2 Soil, 2.8 ft Cover) ............................................... 133 Figure 18—Comparison of Horizontal Diameter Changes between Cases with Mohr-Coulomb and Hardening-Soil Models (HDPE Pipe, A2 Soil, 2.8 ft Cover) ............................................... 134 Figure 19—Comparison of Thrusts between Cases with Mohr-Coulomb and Hardening-Soil Models (HDPE Pipe, A2 Soil, 2.8 ft Cover) ............................................................................... 134 Figure 20—Comparison of Moments between Cases with Mohr-Coulomb and Hardening-Soil Models (HDPE Pipe, A2 Soil, 2.8 ft Cover) ............................................................................... 134 Figure 21—Cross Section of Finite Element Model for HDPE Pipe in ABAQUS ...................... 138 Figure 22—ABAQUS Metal Arch Model with 3 ft Cover ........................................................... 139 Figure 23—ABAQUS HDPE Pipe Model with 3 ft Cover .......................................................... 139 Figure 24—Comparison of Vertical and Horizontal Displacements between PLAXIS 3D and ABAQUS Analyses (Metal Arch, Test 2, 3 ft Cover) ................................................................. 140 Figure 25—Comparison of Thrusts and Moments under Wheel between PLAXIS 3D and ABAQUS Analyses (Metal Arch, Test 2, 3 ft Cover) ................................................................. 140 Figure 26—Vertical and Horizontal Displacements from ABAQUS Analyses with Orthotropic Properties (Metal Arch, 3 ft Cover) ........................................................................................... 141 Figure 27 –Thrusts and Moments under Wheel from ABAQUS Analyses with Orthotropic Properties (Metal Arch, 3 ft Cover) ........................................................................................... 141 Figure 28—Vertical and Horizontal Displacements from ABAQUS Analyses with Orthotropic Properties (HDPE Pipe, A2 Backfill, 2.8 ft Cover) ..................................................................... 142 Figure 29—Vertical and Horizontal Displacements from ABAQUS Analyses with Orthotropic Properties (HDPE Pipe, A2 Backfill, 1.6 ft Cover) ..................................................................... 143 NCHRP 15-29 Appendix A vii 1. INTRODUCTION NCHRP Project 15-29 was funded to investigate the distribution of live loads through fills and onto culverts. The project is intended to improve AASHTO Specifications for design of buried structures and to investigate differences between the AASHTO Standard Specifications for Highway Bridges, 17th Edition (AASHTO, 2002) and the AASHTO LRFD Bridge Design Specifications, 3th Edition (AASHTO, 2004). The scope of project 15-29 is to conduct studies through three-dimensional (3-D) finite element (FE) modeling of live loads on buried culverts and to develop new AASHTO Specifications based on the findings. Results and proposed design methods will be evaluated against test data available in the literature, but no new tests will be conducted as a part of this project. This report presents an investigation of the available constitutive models for soils that could be used in the 3-D analyses. Information presented includes initial review of available soil models and important model features, preliminary two-dimensional FE studies of live load distribution, and full 3-D FE studies. 2. REVIEW OF AVAILABLE SOIL MODELS Numerous soil constitutive models have been developed to date and are available for finite element analysis. Lade (2005) prepared a summary of widely available soil constitutive models. Each model has different capabilities and requires different experimental data for calibration. Predicting the response of buried structures to surface live loads in a finite element analysis requires a soil constitutive model that accurately captures culvert-soil interaction. Research has been conducted with linear-elastic soil models (for example, Moore and Brachman (1994) and Fernando and Carter (1998)); with nonlinear models including nonlinear elastic models, perfectly plastic models, and plastic models with hardening (for example, Pang (1999)). For typical culvert analysis, which has been historically conducted in 2-D, stress-dependent stiffness and shear failure have been found to be important characteristics of suitable soil models. The Duncan-Selig hyperbolic model (Duncan et al., 1980; Selig, 1988) has such features, and has been implemented in the finite element programs CANDE (Musser, 1989) and SPIDA (Heger et al., 1985) to analyze soil-structure interaction problems for culverts. Soil properties based on these models have been used in the development of current AASHTO specifications for reinforced concrete and thermoplastic pipe. The Duncan-Selig model, consists of the hyperbolic Young's modulus model developed by Duncan (1980), and the hyperbolic bulk modulus NCHRP 15-29 Appendix A 1 developed by Selig (1988). As discussed below, the soil properties used with this model were developed by Selig (1988). CANDE was developed by the FHWA, and has been widely used to design culverts, but operates only in two dimensions. For ease of computation and to allow comparison with CANDE we conducted preliminary analyses in 2-D and then extended these models to 3-D for a complete investigation of actual live load distribution. 3-D modeling is computationally intensive. Because of this, it is important to select the computationally simplest soil model that can accurately capture culvert/soil interaction as resulting from live load. We selected three levels of soil model with varying levels of sophistication for use on the project: • linear-elastic (representing the simplest possible model), • Mohr-Coulomb (linear elastic model with post-failure plasticity), and • Plaxis 3D hardening-soil (stress dependence plus plasticity, similar to Duncan-Selig). Features of the linear-elastic model, Mohr-Coulomb model, Hardening-Soil model, and Duncan- Selig model are briefly discussed below. Compressive stresses are positive throughout this report. 2.1 Linear Elastic Modeling soil as linear elastic provides the most basic soil behavior, with no consideration of non linear stress-strain behavior or plasticity at failure. Linear elastic soil behavior is described by isotropic linear elasticity. Four elastic constants are used in analysis, but given any two of the four, the other two can be calculated. The four parameters are: modulus of elasticity, E, Poisson’s ratio, ν, bulk modulus, B, and shear modulus, G. In actual soil these elastic constants vary with soil stress level, and some analysts use elastic properties that vary with depth. One set of such properties, proposed by Selig (1990) are shown in Table 1. Selig estimated Young's modulus of elasticity from the hyperbolic model for increasing values of maximum principal stress, (σ , typically vertical stress), with the minimum principal stress, (σ , 1 3 typically horizontal stress), equal to one-half to one- times the maximum principal stress. Elastic constants can be selected by evaluating the soil vertical stress level, usually calculated as the depth of fill times the soil density, ignoring the presence of a culvert. Procedures to select elastic constants are described in detail in the following section on the Mohr-Coulomb model. McGrath (1998) found that the proposed soil properties produced soil stiffnesses higher than NCHRP 15-29 Appendix A 2

Description:
2.3 Stress-Dependent Models. 6. 2.3.1 Duncan-Selig Model. 6. 2.3.2 Hardening Soil Model (Plaxis). 10. 2.4 Findings from Soil Model Evaluation. 22 .. Table 53—Summary of Displacements from ABAQUS Analyses with Orthotropic Properties . Figure 10—Conceptual Model for 2D Analysis of Pipes.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.