ebook img

ant colony optimization for the single model u-type assembly line balancing problem PDF

185 Pages·2004·1.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ant colony optimization for the single model u-type assembly line balancing problem

ANT COLONY OPTIMIZATION FOR THE SINGLE MODEL U-TYPE ASSEMBLY LINE BALANCING PROBLEM A THESIS SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING AND THE INSTITUTE OF ENGINEERING AND SCIENCE OF BILKENT UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE By Arda Alp January, 2004 I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science. Prof. Dr. İhsan Sabuncuoğlu (Supervisor) I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science. Prof. Dr. Erdal Erel I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and in quality, as a thesis for the degree of Master of Science. Asst. Prof. Dr. Mehmet Taner Approved for the Institute of Engineering and Sciences: Prof. Dr. Mehmet Baray Director of the Institute of Engineering and Science ii ABSTRACT ANT COLONY OPTIMIZATION FOR THE SINGLE MODEL U-TYPE ASSEMBLY LINE BALANCING PROBLEM Arda Alp M.S. in Industrial Engineering Supervisor: Prof. Dr. İhsan Sabuncuoğlu January, 2004 The assembly line is a production line in which units move continuously through a sequence of stations. The assembly line balancing problem is the allocation of tasks to an ordered sequence of stations subject to the precedence constraints with the objective of minimizing the number of stations. In a U-line the line is configured into a U-shape topology. In this research, a new heuristic, Ant Colony Optimization (ACO) meta-heuristic, and its variants are proposed for the single model U-type assembly line balancing problem (UALBP). We develop a number of algorithms that can be grouped as: (i) direct methods, (ii) modified methods and (iii) methods in which ACO approach is augmented with some metaheuristic. We also construct an extensive experimental study and compare the performance of the proposed algorithms against the procedures reported in the literature. Keywords: U-type assembly line balancing problem, Ant Colony Optimization meta- heuristic. iii ÖZET TEK MODELLİ U-TİPİ MONTAJ HATTI DENGELENMESİ PROBLEMİ İÇİN KARINCA KOLONİSİ OPTİMİZASYONU Arda Alp Endüstri Mühendisliği, Yüksek Lisans Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu Ocak, 2004 Montaj hattı ürünlerin sıralı olarak istasyonlardan geçtiği bir üretim hattıdır. Tek modelli montaj hattı dengelenmesi problemi istasyon sayısının en küçüklenmesi amacına yönelik olarak işlerin öncüllük kısıtı dikkate alınarak sıralı istasyonlara atanmasıdır. U-tipi hatta ise üretim hattı U şeklinde düzenlenmiştir. Bu çalışmada yeni bir sezgisel olan Karınca Kolonisi Optimizasyonu (KKO) ve çeşitleri U-tipi montaj hattı dengelenmesi problemi için önerilmiştir. Geliştirilen algoritmalar üç grup altında incelenebilir: (i) direkt metodlar, (ii) modifiye edilmiş metodlar ve (iii) KKO yaklaşımının diğer bazı sezgisellerle beraber kullanıldığı metodlar. Ayrıca kapsamlı bir deneysel çalışma yapılmış ve önerilen algoritmaların performansı literatürdeki diğer metodlarla karşılaştırılmıştır. Anahtar sözcükler: U-tipi montaj hattı dengelenmesi problemi, Karınca Kolonisi Optimizasyonu meta-sezgiseli. iv To my family, v Acknowledgement I would like to express my deepest gratitude to my supervisor Prof. Dr. İhsan Sabuncuoğlu for his instructive comments in the supervision of the thesis and also for all the encouragement and trust during my graduate study. I am also indebted to Prof. Dr. Erdal Erel for his invaluable guidance, recommendations and everlasting interest for this research and for my future work. I would like to express my special thanks and gratitude to Asst. Prof. Dr. Mehmet Taner for showing keen interest to the subject matter, for his remarks, recommendations and accepting to read and review the thesis. I am grateful to Asst. Prof. Bahar Yetiş Kara for her understanding and her recommedations and also to Asst. Prof. Oya Karaşan for her suggestions and her guidance. I would like to express my deepest thanks to Banu Yüksel for all her encouragement and academic support. I would like to extend my sincere thanks to Savaş Çevik, Nur Beğen, Emrah Zarifoğlu and Pınar Tan. Their endless morale support and friendship during all my desperate times, makes me to face with all the troubles. Finally, I would like to express my gratitude to my family for their love, understanding, suggestions and their endless support. I owe so much to my family. vi Contents Abstract..............................................................................................................iii Özet.....................................................................................................................iv Acknowledgement.............................................................................................vi Contents............................................................................................................vii List of Figures....................................................................................................xi List of Tables...................................................................................................xiv 1 Introduction...................................................................................................1 2 Literature Survey........................................................................................10 2.1 Ant Colony Optimization Meta-Heuristic...........................................10 2.2 U-Type Line Balancing........................................................................21 3 Ant Algorithms and Applications.............................................................28 3.1 Introduction...........................................................................................29 3.2 Biological Fundamentals......................................................................30 3.3 The Ant Colony Optimization Approach.............................................35 3.3.1 Similarities and Difference with Real Ants..............................36 3.4 The ACO Meta-heuristic......................................................................38 3.5 Some Applications of ACO Algorithms..............................................42 vii 4 Proposed Approach: Ant Colony Optimization.....................................43 4.1 Overview of the Proposed Approaches................................................43 4.1.1 Motivation.................................................................................43 4.1.2 Fundamentals............................................................................44 4.1.2.1 The Graph Representation of the Problem................45 4.1.2.2 The Autocatalytic Process..........................................46 4.1.2.3 The Greedy Force.......................................................46 4.1.2.4 The Constraint Satisfaction........................................48 4.1.3 Generation of a Solution...........................................................49 4.2 Proposed Methods................................................................................56 4.2.1 Ant System (AS)........................................................................56 4.2.2 Ant System with Elitist Strategy (AS ).................................61 elite 4.2.3 Ant System with Ranking (AS )............................................62 rank 4.2.4 Ant Colony System (ACS)........................................................63 4.2.5 Modified Ant Colony System (ACS) with Random Search ...68 4.2.6 A New Ant Colony Optimization (ACO) Method ..................76 Version 1....................................................................................77 Version 2....................................................................................83 4.2.7 Ant Colony System Augmented with Simulated Annealing (ACS with SA)...........................................................................86 4.2.8 Ant Colony System Augmented with Beam Search (ACS with BS)...........................................................................86 viii 5 Experimental Setting..................................................................................88 5.1 Experimental Setting for AS................................................................94 5.1.1 Number of Ants.........................................................................94 5.1.2 Parameters Setting.....................................................................96 5.2 Experimental Setting for AS ............................................................98 elite 5.2.1 Number of Ants.........................................................................98 5.2.2 Parameters Setting...................................................................100 5.3 Experimental Setting for ACS............................................................102 5.3.1 Number of Ants.......................................................................102 5.3.2 Parameters Setting...................................................................104 5.4 Experimental Setting for Modified ACS with Random Search........106 5.5 Experimental Setting for New ACO Approach, Version 1...............106 5.5.1 Number of Ants.......................................................................106 5.5.2 Parameters Setting...................................................................108 5.6 Experimental Setting for New ACO Approach, Version 2...............113 5.6.1 Number of Ants.......................................................................113 5.6.2 Parameters Setting...................................................................115 6 Computational Results.............................................................................116 6.1 Computational Results for AS............................................................118 6.2 Computational Results for AS .......................................................123 elite 6.3 Computational Results for ACS.........................................................128 6.4 Computational Results for Modified ACS with Random Search.....133 ix 6.5 Computational Results for New ACO Approach, Version 1............134 6.6 Computational Results for New ACO Approach, Version 2............141 7 Conclusion.................................................................................................147 Bibliography...................................................................................................151 Appendix.........................................................................................................159 A1 Appendix A.........................................................................................159 A2 Appendix B.........................................................................................163 A3 Appendix C.........................................................................................165 A4 Appendix D.........................................................................................168 x

Description:
and its variants are proposed for the single model U-type assembly line balancing problem (UALBP). We develop a number of algorithms that can be grouped as
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.