ebook img

Ant Colony Optimization and its Application to Adaptive Routing in Telecommunication Networks PDF

370 Pages·2012·2.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ant Colony Optimization and its Application to Adaptive Routing in Telecommunication Networks

UNIVERSITE· LIBRE DE BRUXELLES FACULTE· DES SCIENCES APPLIQUE·ES Ant Colony Optimization and its Application to Adaptive Routing in Telecommunication Networks Gianni Di Caro Dissertationpre·sente·e envuedel’obtentiondugradede DocteurenSciencesApplique·es Bruxelles,September2004 PROMOTEUR: PROF. MARCO DORIGO IRIDIA, InstitutdeRecherchesInterdisciplinaires etdeDe·veloppementsenIntelligenceArti(cid:2)cielle ANNE·E ACADE·MIQUE 2003-2004 Abstract Inantsocieties,and,moreingeneral,ininsectsocieties,theactivitiesoftheindividuals,aswell asofthesocietyasawhole,arenotregulatedbyanyexplicitformofcentralizedcontrol. Onthe otherhand,adaptiveandrobustbehaviorstranscendingthebehavioralrepertoireofthesingle individualcanbeeasilyobservedatsocietylevel. Thesecomplexglobalbehaviorsaretheresult ofself-organizingdynamicsdrivenbylocalinteractionsandcommunicationsamonganumber ofrelativelysimpleindividuals. Thesimultaneouspresenceoftheseandotherfascinatingand unique characteristics have made ant societies an attractive and inspiring model for building newalgorithmsandnewmulti-agentsystems.Inthelastdecade,antsocietieshavebeentakenasa referenceforanevergrowingbodyofscienti(cid:2)cwork,mostlyinthe(cid:2)eldsofrobotics,operations research,andtelecommunications. Amongthedifferentworksinspiredbyantcolonies,theAntColonyOptimizationmetaheuristic (ACO)isprobablythemostsuccessfulandpopularone.TheACOmetaheuristicisamulti-agent frameworkforcombinatorialoptimizationwhosemaincomponentsare: asetofant-likeagents, the use of memory and of stochastic decisions, and strategies of collective and distributed learning. It (cid:2)nds its roots in the experimental observation of a speci(cid:2)c foraging behavior of some ant coloniesthat,underappropriateconditions,areabletoselecttheshortestpathamongfewpossi- blepathsconnectingtheirnesttoafoodsite. Thepheromone,avolatilechemicalsubstancelaid onthegroundbytheantswhilewalkingandaffectinginturntheirmovingdecisionsaccording toitslocalintensity,isthemediatorofthisbehavior. Alltheelementsplayinganessentialrole in the ant colony foraging behavior were understood, thoroughly reverse-engineered and put toworktosolve problemsofcombinatorial optimization byMarcoDorigoandhisco-workers at the beginning of the 1990’s. From that moment on it has been a (cid:3)ourishing of new com- binatorial optimization algorithms designed after the (cid:2)rst algorithms of Dorigo’s et al., and of related scienti(cid:2)c events. In 1999 the ACO metaheuristic was de(cid:2)ned by Dorigo, Di Caro and Gambardellawiththepurposeofprovidingacommonframeworkfordescribingandanalyzing allthesealgorithmsinspiredbythesameantcolonybehaviorandbythesamecommonprocess ofreverse-engineeringofthisbehavior. Therefore, theACOmetaheuristicwasde(cid:2)nedaposte- riori,astheresultofasynthesisefforteffectuatedonthestudyofthecharacteristicsofallthese ant-inspired algorithms and on the abstraction of their common traits. The ACO’s synthesis wasalsomotivatedbytheusuallygoodperformanceshownbythealgorithms(e.g.,forseveral importantcombinatorialproblemslikethequadraticassignment, vehicleroutingandjobshop scheduling,ACOimplementationshaveoutperformedstate-of-the-artalgorithms). Thede(cid:2)nitionandstudyoftheACOmetaheuristicisoneofthetwofundamentalgoalsofthe thesis. Theotherone,strictlyrelatedtothisformerone,consistsinthedesign,implementation, andtestingofACOinstancesforproblemsofadaptiveroutingintelecommunicationnetworks. This thesis is an in-depth journey through the ACO metaheuristic, during which we have (re)de(cid:2)nedACOandtriedtogetaclearunderstandingofitspotentialities,limits,andrelation- shipswithotherframeworksandwithitsbiologicalbackground. Thethesistakesintoaccount allthedevelopmentsthathavefollowedtheoriginal1999’sde(cid:2)nition,andprovidesaformaland comprehensivesystematizationofthesubject,aswellasanup-to-dateandquitecomprehensive review of current applications. We have also identi(cid:2)ed in dynamic problems in telecommuni- cation networks the most appropriate domain of application for the ACO ideas. According to this understanding, in the most applicative part of the thesis we have focused on problems of adaptiveroutinginnetworksandwehavedevelopedandtestedfournewalgorithms. Adopting an original point of view with respect to the way ACO was (cid:2)rstly de(cid:2)ned (but maintaining full conceptual and terminological consistency), ACO is here de(cid:2)ned and mainly discussedinthetermsofsequentialdecisionprocessesandMonteCarlosamplingandlearning.More precisely,ACOischaracterizedasapolicysearchstrategyaimedatlearningthedistributedpa- rameters(calledpheromonevariablesinaccordancewiththebiologicalmetaphor)ofthestochastic decisionpolicywhichisusedbyso-calledantagentstogeneratesolutions. Eachantrepresents inpracticeanindependentsequentialdecisionprocessaimedatconstructingapossiblyfeasibleso- lutionfortheoptimizationproblemathandbyusingonlyinformationlocaltothedecisionstep. Antsarerepeatedlyandconcurrentlygeneratedinordertosamplethesolutionsetaccordingtothe currentpolicy. Theoutcomesofthegeneratedsolutionsareusedtopartiallyevaluatethecurrent policy,spotthemostpromisingsearchareas,andupdatethepolicyparametersinordertopossibly focusthesearchinthosepromisingareaswhilekeepingasatisfactorylevelofoverallexploration. ThiswayoflookingatACOhasfacilitatedtodisclosethestrictrelationshipsbetweenACO and other well-known frameworks, like dynamic programming, Markov and non-Markov decision processes,andreinforcementlearning. Inturn,thishasfavoredreasoningonthegeneralproperties ofACOintermsofamountofcompletestateinformationwhichisusedbytheACO’santstotake optimized decisions and to encode in pheromone variables memory of both the decisions that belongedtothesampledsolutionsandtheirquality. The ACO’s biological context of inspiration is fully acknowledged in the thesis. We report with extensive discussions on the shortest path behaviors of ant colonies and on the identi(cid:2)- cation and analysis of the few nonlinear dynamics that are at the very core of self-organized behaviors in both the ants and other societal organizations. We discuss these dynamics in the generalframeworkofstigmergicmodeling,basedonasynchronousenvironment-mediatedcom- munication protocols, and (pheromone) variables priming coordinated responses of a number of(cid:147)cheap(cid:148)andconcurrentagents. ThesecondhalfofthethesisisdevotedtothestudyoftheapplicationofACOtoproblems ofonlineroutingintelecommunicationnetworks. Thisclassofproblemshasbeenidenti(cid:2)edinthe thesisasthemostappropriatefortheapplicationofthemulti-agent, distributed, andadaptive natureoftheACOarchitecture. FournovelACOalgorithmsforproblemsofadaptiveroutingin telecommunicationnetworksarethroughlydescribed. Thefouralgorithmscoverawidespec- trumofpossibletypesofnetwork: twoofthemdeliverbest-efforttraf(cid:2)cinwiredIPnetworks,one isintendedforquality-of-service(QoS)traf(cid:2)cinATMnetworks,andthefourthisforbest-efforttraf- (cid:2)c in mobile ad hoc networks. The two algorithms for wired IP networks have been extensively testedbysimulationstudiesandcomparedtostate-of-the-artalgorithmsforawidesetofrefer- encescenarios. Thealgorithmformobileadhocnetworksisstillunderdevelopment,butquite extensive results and comparisons with a popular state-of-the-art algorithm are reported. No resultsarereportedforthealgorithmforQoS,whichhasnotbeenfullytested. Theobservedex- perimentalperformanceisexcellent,especiallyforthecaseofwiredIPnetworks:ouralgorithms always perform comparably or much better than the state-of-the-art competitors. In the thesis wetrytounderstandtherationalebehindthebrilliantperformanceobtainedandthegoodlevel ofpopularityreachedbyouralgorithms. Moreingeneral,wediscussthereasonsofthegeneral ef(cid:2)cacyoftheACOapproachfornetworkroutingproblemscomparedtothecharacteristicsof moreclassicalapproaches. Movingfurther,wealsoinformallyde(cid:2)neAntColonyRouting(ACR), a multi-agent framework explicitly integrating learning components into the ACO’s design in ordertode(cid:2)neageneralandinasensefuturisticarchitectureforautonomicnetworkcontrol. Most of the material of the thesis comes from a re-elaboration of material co-authored and publishedinanumberofbooks,journalpapers,conferenceproceedings,andtechnicalreports. ThedetailedlistofreferencesisprovidedintheIntroduction. Acknowledgments First,Ishallthanktheants! Withoutthoselittlematesbuggingaroundthisthesissimplywould have not happened. When I was a little kid, I was kind of concerned about the little ant-hills and their tiny inhabitants sprouting all over my garden. So, one day, I started thinking that duringthewintertheycouldfeelcold,andIunilaterallydecidedtoequiptheirprimitivenests withatechnologicallyadvancedheatingsystem. Therefore,Istarteddrillingandputtingpipes underground,connectingthepipestofaucetsandsinks,andlettinghotwaterpassingthrough in order to warm up my little mates during the cold winter days. How disappointed I was whenIrealizedthattheydidn’tappreciatemyheatingtechnologyandquiteinashorttimethey just vanished, likely moving their nests somewhere else! Well, actually, I then tried to let my adorablecattoenjoymyconcernsaboutcoldandIbroughtmynowwellconsolidatedheating technologyintothecartonboxwherehewasusedtospend,sleeping,mostofhisprecioustime. Unfortunately,hetoodidn’tseemreadytoenjoythepleasuresoftechnology, soIgaveupand focusedonotheramenities...So,Idoreallyfeelnowthatinasensemylittlemateshadactually appreciatedthosemaybeabitawkwardeffortsandrewardedmeback,layingsomewhereinthe universethepheromonetrailthatledmetoMarcoDorigoandhisant-inspiredalgorithms. He’s thepersonIshallthankthemoreforwhatisinthisthesis,andforreallybuggingmetowriteit! Thecontent ofthe thesis covers part oftheresearch work thatI’ve done during thelast six years.Theseyearshavebeenalongjourneyintoscienceandintolife.I’vemoved(cid:2)rsttoBrussels (IRIDIA), then to Japan (ATR), then back to Belgium (IRIDIA again), and (cid:2)nally to Lugano, in Switzerland (IDSIA). All these places have been great places to work and enjoy life. They are fullyinternationalenvironmentswhereIhadthechancetomakereallygoodfriendsandtomeet so many great scientists from whom I could really learn so much! I want to thank for this the directors of these laboratories where I have been (Philippe Smets, Hugues Bersini and Marco Dorigo,KatsunoriShimohara,KenjiDoya,andLucaGambardella)whohavedoneandarestill doingagreatjob! Thisthesisisreallytheoutgrowthofallthediscussions,brainstorming,collaborations,that havehappenedduringtheseyears. It’slikeapuzzle,whosetileshavebeenaddeddaybyday: after a discussion in front of several beers, or after attending a seminar about how Japanese can learn to distinguish between the sounds (cid:147)lock(cid:148) and (cid:147)rock(cid:148), or after a long telephone call withsomefriendthousandsofkilometersfarawaydiscussingaboutmarkovdecisionprocesses or antibodies at 3am...Thinking back, I realize that I should thank so many people across the world, but they are really too many. I want to mention here just few of them, those who con- sciously or unconsciously (!), in different ways, have had a major impact on my growth as a scientist. Thelistisin(stochastic)orderofappearance: AlessandroSaf(cid:2)otti,BrunoMarchal,Vit- torio Gorrini, Marco Dorigo, Hugues Bersini, Gianluca Bontempi, Katsunori Shimohara, Kenji Doya,ThomasHalvaLabella,LucaMariaGambardella,andFrederickDucatelle. TherearealsofewveryspecialpeoplethatIreallywanttomention(instrictalphabeticorder, this time). They have been the closest ones, the most important ones, either from a scienti(cid:2)c pointofviewand/orfromapersonalpointview. Tothemareallyspecial(cid:147)Grazie!(cid:148) goesdeep down from my heart: Carlotta Piscopo, Luca Di Mauro, Masako (Maco-chan) Hosomi, Mauro Birattari, Silvana Valensin. I hope there’ll always be a trail of pheromone somewhere in the universeto(cid:2)ndeachother. TothislistofveryspecialpeopleImustaddmymother,alwaystheretolistentomymisfor- tunes,togivemeawarmword,toencourageme,andwhogavemethe(cid:2)rstrealimpetustosit downandwritethe(cid:2)rstwordsofthisthesis: (cid:147)GrazieMamma!(cid:148). AspecialthankgoesalsotoLucaGambardella, whoverykindlyletmealsotoworkatthe thesis while I was/am in his group at IDSIA, and who has always been a source of valuables suggestionsandpointsofview. Part of the work in this thesis was supported by two Marie Curie fellowships (contract n. CEC-TMRERBFMBICT961153andHPMF-CT-2000-00987)awardedtotheauthorbythescien- ti(cid:2)cinstitutionsoftheEuropeanCommunity.Theinformationprovidedisthesoleresponsibility oftheauthoranddoesnotre(cid:3)ecttheCommunity’sopinion. TheCommunityisnotresponsible foranyusethatmightbemadeofdataappearinginthisthesis. Contents ListofFigures xii ListofTables xiii ListofAlgorithms xv ListofExamples xvii ListofAbbreviations xix 1 Introduction 1 1.1 Goalsandscienti(cid:2)ccontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Generalgoalsofthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Theoreticalandpracticalrelevanceofthethesis’goals. . . . . . . . . . . . . 6 1.1.3 Generalscienti(cid:2)ccontributions . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Organizationandpublishedsourcesofthethesis . . . . . . . . . . . . . . . . . . . . 10 1.3 ACOinanutshell: apreliminaryandinformalde(cid:2)nition . . . . . . . . . . . . . . . 17 I FromrealantcoloniestotheAntColonyOptimizationmetaheuristic 21 2 Antcolonies,thebiologicalrootsofAntColonyOptimization 23 2.1 Antscoloniescan(cid:2)ndshortestpaths . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Shortestpathsastheresultofasynergyofingredients . . . . . . . . . . . . . . . . . 27 2.3 Robustness,adaptivity,andself-organizationproperties. . . . . . . . . . . . . . . . 30 2.4 Modelingantcolonybehaviorsusingstigmergy: theantway. . . . . . . . . . . . . 31 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Combinatorialoptimization,constructionmethods,anddecisionprocesses 37 3.1 Combinatorialoptimizationproblems . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Solutioncomponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.2 Characteristicsofproblemrepresentations . . . . . . . . . . . . . . . . . . . 44 3.2 Constructionmethodsforcombinatorialoptimization . . . . . . . . . . . . . . . . . 46 3.2.1 Strategiesforcomponentinclusionandfeasibilityissues . . . . . . . . . . . 49 3.2.2 Appropriatedomainsofapplicationforconstructionmethods . . . . . . . . 51 3.3 Constructionprocessesassequentialdecisionprocesses . . . . . . . . . . . . . . . . 52 3.3.1 Optimalcontrolandthestateofaconstruction/decisionprocess . . . . . . 54 3.3.2 Stategraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.3 Constructiongraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.4 ThegeneralframeworkofMarkovdecisionprocesses . . . . . . . . . . . . . 67 3.3.5 Genericnon-Markovprocessesandthenotionofphantasma . . . . . . . . . 72 viii CONTENTS 3.4 Strategiesforsolvingoptimizationproblems . . . . . . . . . . . . . . . . . . . . . . 75 3.4.1 Generalcharacteristicsofoptimizationstrategies . . . . . . . . . . . . . . . 76 3.4.2 Dynamicprogrammingandtheuseofstate-valuefunctions . . . . . . . . . 80 3.4.3 Approximatevaluefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4.4 Thepolicysearchapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4 TheAntColonyOptimizationMetaheuristic(ACO) 95 4.1 De(cid:2)nitionoftheACOmetaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1.1 Problemrepresentationandpheromonemodelexploitedbyants . . . . . . 98 4.1.1.1 Stategraphandsolutionfeasibility . . . . . . . . . . . . . . . . . . 98 4.1.1.2 Pheromonegraphandsolutionquality . . . . . . . . . . . . . . . . 99 4.1.2 Behavioroftheant-likeagents . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Behaviorofthemetaheuristicatthelevelofthecolony . . . . . . . . . . . . 107 4.1.3.1 Schedulingoftheactions . . . . . . . . . . . . . . . . . . . . . . . . 108 4.1.3.2 Pheromonemanagement . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1.3.3 Daemonactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2 AntSystem: the(cid:2)rstACOalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.3 DiscussionongeneralACO’scharacteristics . . . . . . . . . . . . . . . . . . . . . . 115 4.3.1 Optimizationbyusingmemoryandlearning . . . . . . . . . . . . . . . . . . 115 4.3.2 Strategiesforpheromoneupdating. . . . . . . . . . . . . . . . . . . . . . . . 122 4.3.3 Shortestpathsandimplicit/explicitsolutionevaluation . . . . . . . . . . . 126 4.4 Revisedde(cid:2)nitionsforthepheromonemodelandtheant-routingtable . . . . . . . 128 4.4.1 Limitsoftheoriginalde(cid:2)nition . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.4.2 Newde(cid:2)nitionstousemoreandbetterpheromoneinformation . . . . . . . 129 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5 ApplicationofACOtocombinatorialoptimizationproblems 137 5.1 ACOalgorithmsforproblemsthatcanbesolvedincentralizedway . . . . . . . . . 140 5.1.1 Travelingsalesmanproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.1.2 Quadraticassignmentproblems . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.1.3 Schedulingproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.1.4 Vehicleroutingproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.1.5 Sequentialorderingproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.1.6 Shortestcommonsupersequenceproblems . . . . . . . . . . . . . . . . . . . 154 5.1.7 Graphcoloringandfrequencyassignmentproblems . . . . . . . . . . . . . 154 5.1.8 Binpackingandmulti-knapsackproblems . . . . . . . . . . . . . . . . . . . 156 5.1.9 Constraintsatisfactionproblems . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.2 Parallelmodelsandimplementations . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.3 Relatedapproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 II ApplicationofACOtoproblemsofadaptiveroutingin telecommunicationnetworks 169 6 Routingintelecommunicationnetworks 171 6.1 Routing: De(cid:2)nitionandcharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.2 Classi(cid:2)cationofroutingalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.2.1 Controlarchitecture: centralizedvs. distributed . . . . . . . . . . . . . . . . 175 6.2.2 Routingtables: staticvs. dynamic . . . . . . . . . . . . . . . . . . . . . . . . 175 CONTENTS ix 6.2.3 Optimizationcriteria: optimalvs. shortestpaths . . . . . . . . . . . . . . . . 177 6.2.4 Loaddistribution: singlevs. multiplepaths . . . . . . . . . . . . . . . . . . . 177 6.3 Metricsforperformanceevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.4 Mainroutingparadigms: Optimalandshortestpathrouting . . . . . . . . . . . . . 182 6.4.1 Optimalrouting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 6.4.2 Shortestpathrouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 6.4.2.1 Distance-vectoralgorithms . . . . . . . . . . . . . . . . . . . . . . . 184 6.4.2.2 Link-statealgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.4.3 Collectiveandindividualrationalityinoptimalandshortestpathrouting . 190 6.5 AnhistoricalglanceattheroutingontheInternet . . . . . . . . . . . . . . . . . . . 192 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7 ACOalgorithmsforadaptiverouting 197 7.1 AntNet: traf(cid:2)c-adaptivemultipathroutingforbest-effortIPnetworks . . . . . . . 200 7.1.1 Thecommunicationnetworkmodel . . . . . . . . . . . . . . . . . . . . . . . 202 7.1.2 Datastructuresmaintainedatthenodes . . . . . . . . . . . . . . . . . . . . . 205 7.1.3 Descriptionofthealgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 7.1.3.1 Proactiveantgeneration . . . . . . . . . . . . . . . . . . . . . . . . 208 7.1.3.2 Storinginformationduringtheforwardphase. . . . . . . . . . . . 210 7.1.3.3 Routingdecisionpolicyadoptedbyforwardants . . . . . . . . . . 210 7.1.3.4 Avoidingloops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.1.3.5 Forwardantschangeintobackwardantsandretracethepath . . . 213 7.1.3.6 Updatingofroutingtablesandstatisticaltraf(cid:2)cmodels . . . . . . 214 7.1.3.7 Updatesofallthesub-pathscomposingtheforwardpath . . . . . 219 7.1.3.8 Acompleteexampleandpseudo-codedescription . . . . . . . . . 221 7.1.4 Acriticalissue: howtomeasuretherelativegoodnessofapath? . . . . . . 221 7.1.4.1 Constantreinforcements . . . . . . . . . . . . . . . . . . . . . . . . 223 7.1.4.2 Adaptivereinforcements . . . . . . . . . . . . . . . . . . . . . . . . 224 7.2 AntNet-FA:improvingAntNetusingfasterants . . . . . . . . . . . . . . . . . . . . 226 7.3 AntColonyRouting(ACR):aframeworkforautonomicnetworkrouting . . . . . 228 7.3.1 Thearchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.3.1.1 Nodemanagers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.3.1.2 Activeperceptionsandeffectors . . . . . . . . . . . . . . . . . . . . 237 7.3.2 TwoadditionalexamplesofAntColonyRoutingalgorithms . . . . . . . . . 238 7.3.2.1 AntNet+SELA:QoSroutinginATMnetworks. . . . . . . . . . . . 239 7.3.2.2 AntHocNet: routinginmobileadhocnetworks . . . . . . . . . . . 242 7.4 Relatedworkonant-inspiredalgorithmsforrouting . . . . . . . . . . . . . . . . . . 245 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 8 ExperimentalresultsforACOroutingalgorithms 257 8.1 Experimentalsettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 8.1.1 Topologyandphysicalpropertiesofthenetworks . . . . . . . . . . . . . . . 259 8.1.2 Traf(cid:2)cpatterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 8.1.3 Performancemetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 8.2 Routingalgorithmsusedforcomparison . . . . . . . . . . . . . . . . . . . . . . . . 263 8.2.1 Parametervalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 8.3 ResultsforAntNetandAntNet-FA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 8.3.1 SimpleNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8.3.2 NSFNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 8.3.3 NTTnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 x CONTENTS 8.3.4 6x6Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 8.3.5 Largerrandomlygeneratednetworks . . . . . . . . . . . . . . . . . . . . . . 274 8.3.6 Routingoverhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 8.3.7 SensitivityofAntNettotheantlaunchingrate . . . . . . . . . . . . . . . . . 277 8.3.8 Ef(cid:2)cacyofadaptivepathevaluationinAntNet . . . . . . . . . . . . . . . . . 278 8.4 ExperimentalsettingsandresultsforAntHocNet . . . . . . . . . . . . . . . . . . . . 278 8.5 Discussionoftheresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 III Conclusions 289 9 Conclusionsandfuturework 291 9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 9.2 Generalconclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 9.3 Summaryofcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 9.4 Ideasforfuturework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 Appendices A De(cid:2)nitionofmentionedcombinatorialproblems 305 B Modi(cid:2)cationmethodsandtheirrelationshipswithconstructionmethods 309 C ObservableandpartiallyobservableMarkovdecisionprocesses 313 C.1 Markovdecisionprocesses(MDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 C.2 PartiallyobservableMarkovdecisionprocesses(POMDP) . . . . . . . . . . . . . . 314 D MonteCarlostatisticalmethods 317 E Reinforcementlearning 319 F Classi(cid:2)cationoftelecommunicationnetworks 321 F.1 Transmissiontechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 F.2 Switchingtechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 F.3 Layeredarchitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 F.4 Forwardingmechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 F.5 Deliveredservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Bibliography 328

Description:
Abstract. In ant societies, and, more in general, in insect societies, the activities of the decision policy which is used by so-called ant agents to generate solutions. 3.4 State diagram for a 4-cities asymmetric TSP using three inclusion .. 7.2 Potential problems when updating intermediate sub-p
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.