AlbertOverhauser AnomalousEffectsinSimpleMetals RelatedTitles Friebolin,H. BasicOne-and Two-DimensionalNMR Spectroscopy 2005 ISBN:978-3-527-31233-7 Wöhrle,D.,Pomogailo,A.D.(eds.) Metal Complexesand Metals inMacromolecules Synthesis,StructureandProperties 2003 ISBN:978-3-527-30499-8 Grant,D.M.,Harris,R.K.(eds.) Encyclopediaof Nuclear MagneticResonance 9Volumes 2002 ISBN:978-0-470-84784-8 Salibi,N.,Brown,M.A.(eds.) Clinical MR Spectroscopy FirstPrinciples 1998 ISBN:978-0-471-18280-1 Albert Overhauser Anomalous Effects in Simple Metals WILEY-VCH VerlagGmbH &Co.KGaA TheAuthor AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.AlbertOverhauser publisherdonotwarranttheinformation DepartmentofPhysics containedinthesebooks,includingthisbook,to PurdueUniversity befreeoferrors.Readersareadvisedtokeepin 525,NorthwesternAvenue mindthatstatements,data,illustrations, WestLafayette,IN47907 proceduraldetailsorotheritemsmay USA inadvertentlybeinaccurate. LibraryofCongressCardNo.:appliedfor BritishLibraryCataloguing-in-PublicationData: Acataloguerecordforthisbookisavailable fromtheBritishLibrary. Bibliographicinformationpublishedbythe DeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetathttp://dnb.d-nb.de. ©2011WILEY-VCHVerlagGmbH&Co.KGaA, Weinheim Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmay bereproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmitted ortranslatedintoamachinelanguagewithout writtenpermissionfromthepublishers.Regis- terednames,trademarks,etc.usedinthisbook, evenwhennotspecificallymarkedassuch,are nottobeconsideredunprotectedbylaw. Typesetting le-texpublishingservicesGmbH, Leipzig PrintingandBinding StraussGmbH, Mörlenbach CoverDesign AdamDesign,Weinheim PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN 978-3-527-40859-7 V Foreword CommentsbyM.S.DresselhausandG.Dresselhaus Thisvolumeonthephysicsofsimplemetalsfeaturesacollectionofarticlesconsti- tutingtheseminalcontributionsthatAlbertWarnerOverhausermadetothisfield with a view toward its future as derived from his own research. He was attract- edtosimplemetalslikepotassiumatanearlytime(1951)becausesimplemetals allowedhimtostudytheeffectofinteractingelectronswhichareresponsiblefor themanyinterestingandfundamentalphenomenaexhibitedbythesesimplemet- als. This research area is now called “emergent phenomena” which address the questionof“howdocomplexphenomenaemergefromsimpleingredients”.This topicremainsattheforefrontofcondensedmatterphysics,ascitedinthepresent decadalstudybytheUSNationalResearchCouncilCondensedMatterandMateri- alsPhysics2010Committeeentitled“TheScienceoftheWorldAroundUs”. Over hisactivecareer ofabout 55years, AlOverhauser haswrittenextensively (about65paperspublishedinprestigiousjournals)onthesubjectoftheproperties oftheelectronicstructureofthesimplestmetals,namelypotassiumandotheralka- limetals.Thisisasubjectthatisusuallycoveredratherbrieflyineveryelementary condensedmatterphysicscourseforbothundergraduatesandgraduatestudents becauseitissofundamental.Overhauserhasclearlydemonstratedwhythesema- terialshavesuchafundamentalimportanceforourunderstandingofcondensed matter systems. Furthermore Overhauser’s research papers have become impor- tant for advancing our understanding of the “many body” aspect of all metallic systemswhichsostronglydependontheinteractionsbetweenelectronsandwith theirassociatedspins.Thisbookonanapparentlysimpletopicclearlypointsout the basic interactions which are necessary to understand this important area of physics. Now, let us say a few words about Albert Warner Overhauser’s physics career. HewasnominallythefirstPh.D.studentofCharlesKittelattheUniversityofCal- ifornia (U.C.) Berkeley, who in the early 1950’s became a tenured full professor facultyacquisitionatU.C.Berkeley.KittelhadvisitedU.C.BerkeleyfromBellLabs in1950,theyearbeforeKittel’spermanentappointmenttoU.C.Berkeley.Shortly beforeKittelreturnedtoBellLabsfromhisvisitingappointmentatU.C.Berkekry, AnomalousEffectsinSimpleMetals.AlbertOverhauser Copyright©2011WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-40859-7 VI Foreword KittelmetAlOverhauserwhowaslookingforathesistopic.Kittelthensuggested theresearch which in later years led to the discovery of the “Overhauser Effect”. SoonafterthisencounterbetweenKittelandOverhauser,KittelleftBerkeleytore- turn to Bell Labs. During Kittel’s absence, Al Overhauser worked independently on this research project and quickly reached the point of writing a classic paper onthesubject whichwassoonpublished inthePhysicalReview.[“Paramagnetic relaxation in metals”, Phys. Rev. 89, 689 (1953)]. When Kittel returned to Berke- leyafter windinguphisaffairsat BellLabs, hestarted lookingintotheStatus of his new U.C. Berkeley research group. He then noticed that Overhauser had no stipendfortheFallterm.WhenKitteldiscussedthisissuewithOverhauser,Alin- formed Kittel that he didn’t need support as a graduate student because he had alreadyfinishedhisthesis.Overhauser then informedKittel that nowheneeded ajobinstead.At that point Kittelcontacted hisfriendProfessor Fred Seitzat the Universityof Illinoiswho arranged for a post-doc positionfor Overhauser at the UniversityofIllinois,whichwasthentheMeccaofCondensedMatterPhysics. Because ofhisabsence fromtheBerkeleycampus,Kitteldidn’treallyfullyun- derstandtheworkofhisstudent,butsinceOverhauserwasknownatBerkeleyto beabrilliantstudent,Kittelthoughtthethesisworkwasimportant.SowhenGene Dresselhaus joined the Kittel research group in the fall on 1953, Gene’s first as- signmentwastocheckoverOverhauser’sthesis.ReadingOverhauser’sthesiswas educationalfirstly,in becomingcalibrated on the great creative workexpected of anewentranttothefieldoftheoreticalcondensedmatter physicswhenworking with Professor Charles Kittel. Secondly, looking for mistakes in Al Overhauser’s publishedworkwasnotagooduseofresearchtime. AfterOverhauser’spostdocatIllinois,wherehediscoveredthefundamentalim- portanceof theOverhauser effect,Alaccepted aCornellprofessorshipat Cornell University.ThetransitionfromapostdoctoaCornellfacultypositionwasunusual evenatthattime.ItwasatCornellthatGeneDresselhaus,startingin1956,gotwell acquaintedwiththeOverhauserresearchprogramandfamily.Laterin1958,when MillieDresselhausarrivedatCornell,shejoinedthegroupofOverhauserfriends andadmirers.Thisgroupwasveryhappytogetherforonlyashorttime.Thegroup wassoonbrokenupwhenOverhauserleftforFordResearchLaboratoriesin1958. It was while Overhauser was at Ford that he started his long time creative work onChargeDensityWavesandSpinDensitywavesinpotassiumandothersimple systems. WithoutAl’spresenceatCornell,theCornelljoblostitsattractionfortheDres- selhausduoandtheyshortlyleftin1960toestablishtheirowncareersatMIT. GeneDresselhaus MillieDresselhaus VII Contents Foreword V PartI IntroductionandOverview 1 1 TheSimplestMetal:Potassium 3 2 SDWandCDWInstabilities 5 3 TheCDWWavevectorQandQ-domains 7 4 OpticalAnomalies 8 5 PhaseExcitationsofanIncommensurateCDW 10 6 NeutronDiffractionSatellites 12 7 PhasonPhenomena 14 8 Fermi-SurfaceDistortionandtheSpin-ResonanceSplitting 16 9 MagnetoresistivityandtheInducedTorqueTechnique 18 10 InducedTorqueAnisotropy 20 11 MicrowaveTransmissionThroughKSlabsinaPerpendicularFieldH 22 12 Angle-ResolvedPhotoemission 24 13 ConcludingRemarks 26 PartII ReprintsofSDWorCDWPhenomenainSimpleMetals 29 R1 GiantSpinDensityWaves 33 R2 MechanismofAntiferromagnetisminDiluteAlloys 38 2.1 Introduction 38 2.2 DynamicsofaSpin-DensityWave 41 2.3 ThermodynamicsoftheAntiferromagneticPhase 45 2.4 ConcludingRemarks 47 A Appendix 48 A.1 Objection1 48 A.2 ReplytoObjection1 48 AnomalousEffectsinSimpleMetals.AlbertOverhauser Copyright©2011WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-40859-7 VIII Contents A.3 Objection2 49 A.4 ReplytoObjection2 49 A.5 Objection3 49 A.6 ReplytoObjection3 49 A.7 Objection4 50 A.8 ReplytoObjection4 50 R3 SpinDensityWavesinanElectronGas 51 3.1 Introduction 51 3.2 NatureofaSpinDensityWave 53 3.3 GeneralProofoftheSDWInstability 56 3.4 LinearSpinDensityWaves 60 3.5 SpinSusceptibilityoftheParamagneticState 62 3.6 DetectionofSDW’sbyNeutronDiffraction 65 3.7 TemperatureDependenceofSDWParameters 67 3.8 AntiferromagnetismofChromium 69 3.9 AccidentalFerrimagnetism 73 R4 Spin-Density-WaveAntiferromagnetisminPotassium 76 R5 HeliconPropagationinMetalsNeartheCyclotronEdge 80 5.1 Introduction 80 5.2 TheSurfaceImpedance 82 5.3 HeliconPropagationinaSpin-DensityWaveMetal 87 R6 ExchangeandCorrelationInstabilitiesofSimpleMetals 91 6.1 Introduction 91 6.2 Matrix-ElementContributionstotheCorrelationEnergy 95 6.3 Parallel-SpinCorrelationandUmklappCorrelation 98 6.4 Charge-Density-WaveInstabilities 100 A Appendix 102 R7 SplittingofConduction-ElectronSpinResonanceinPotassium 105 7.1 Introduction 105 7.2 Anisotropyofg 107 7.3 Stress-InducedQDomains 110 R8 MagnetoresistanceofPotassium 113 8.1 Introduction 113 8.2 Single-CrystalMagnetoresistivityofPotassium 115 8.3 ModelCalculationsofMagnetoresistanceinMetalswithMagneticBreakdown 115 8.4 FermiSurfaceofPotassium 116 8.5 Conclusions 119 R9 ExchangePotentialsinaNonuniformElectronGas 121 R10 ObservabilityofCharge-DensityWavesbyNeutronDiffraction 125 10.1 Introduction 125 10.2 CDWSatellites 126 Contents IX 10.3 StructureFactorsofCubicReflections 127 10.4 MagneticFieldModulationofF(KE) 128 10.5 PhaseModulationofCDW 129 10.6 Debye–WallerFactorsforPhasons 132 10.7 SurveyofElectronicAnomalies 134 10.7.1 OpticalAnomalies 134 10.7.2 Conduction-ElectronSpinResonances 134 10.7.3 Doppler-ShiftedCyclotronResonance 135 10.7.4 Magnetoresistance 135 10.7.5 HallEffect 136 10.7.6 DeHaas–vanAlphenEffect 136 10.7.7 Electron–PhononInteraction 137 10.7.8 PositronAnnihilation 137 10.7.9 OtherProperties 137 10.8 Conclusion 138 R11 QuestionsAbouttheMayer–ElNabyOpticalAnomalyinPotassium 141 11.1 Introduction 141 11.2 ExtrinsicMechanisms 142 11.2.1 AbsorptioninKOH 142 11.2.2 Interference 142 11.2.3 SurfaceRoughness 143 11.2.4 PlasmonAbsorption 143 11.2.5 ScatteringbyKOHAggregates 143 11.2.6 ColorCentersinKOH 143 11.2.7 SurfaceStates 144 11.2.8 AbsorptionbyKParticlesinKOH 144 11.2.9 ImpurityAbsorptioninPotassium 144 11.2.10 UnknownMechanism 144 11.3 IntrinsicMechanisms 145 11.4 TwoCriticalExperiments 147 R12 TheoryoftheResidualResistivityAnomalyinPotassium 149 R13 ElectromagneticGenerationofUltrasoundinMetals 154 13.1 Introduction 154 13.2 ForceonLatticeIons 157 13.3 GeneratedSound-waveAmplitude 158 13.3.1 LocalLimit 160 13.3.2 NonlocalLimit 161 13.4 UltrasonicAttenuationandtheHelicon–PhononInteraction 163 13.4.1 Ultrasonicattenuation 163 13.4.2 Helicon–PhononInteraction 165 13.5 SummaryandConcludingRemarks 166 A Appendix 166 X Contents R14 DynamicsofanIncommensurateCharge-DensityWave 169 14.1 Introduction 169 14.2 EquationsofMotion 170 14.3 JelliumModelforaCDW 171 14.4 Current 172 14.5 EffectsofanAppliedElectricField 173 14.6 CDWAccelerationandEffectiveMass 175 14.7 Conclusion 177 A Appendix 177 R15 MagnetodynamicsofIncommensurateCharge-DensityWaves 179 15.1 Introduction 179 15.2 EquationsofMotion 179 15.3 EffectsofanAppliedMagneticField 180 15.4 MagnetoresistanceandHallCoefficient 185 15.5 TheoryoftheInducedTorque 186 15.6 Conclusions 187 A Appendix 188 R16 PhaseExcitationsofChargeDensityWaves 190 16.1 Fermi-SurfaceInstabilities 190 16.2 HyperfineEffectsofCDW’s 191 16.3 Phasons 192 16.4 PhasonTemperatureFactor 193 16.5 PhasonNarrowingofHyperfineBroadening 194 16.6 Conclusions 196 A Discussion 196 R17 FrictionalForceonaDriftingCharge-DensityWave 199 17.1 Introduction 199 17.2 EquilibriumElectronDistribution 200 17.3 ElectronRelaxationTime 205 17.4 FrictionalEffectsofScatteringontheCDWDriftVelocity 207 17.5 Conclusions 210 R18 AttenuationofPhaseExcitationsinCharge-DensityWaveSystems 212 18.1 Introduction 212 18.2 PhasonsandElectron–Phasoninteraction 213 18.3 Scatteringof“Belly”Electrons 215 18.4 Scatteringof“ConicalPoint”Electrons 217 18.5 Conclusions 219 A Appendix 220 R19 Charge-DensityWavesandIsotropicMetals 221 19.1 Introduction 221 19.2 TheoreticalSummary 222 19.2.1 Wave-MechanicalDescription 222