ebook img

Anomalous conformal currents, shadow fields and massive AdS fields PDF

0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anomalous conformal currents, shadow fields and massive AdS fields

FIAN-TD-2011-12;arXiv:1110.3749[hep-th] Anomalousconformal currents, shadow fields andmassiveAdS fields R.R. Metsaev∗ DepartmentofTheoreticalPhysics,P.N.LebedevPhysicalInstitute,Leninskyprospect53,Moscow119991,Russia IntheframeworkofgaugeinvariantapproachinvolvingStueckelbergandauxiliaryfields,totallysymmetric arbitraryspin anomalous conformal current and shadow fieldinflat space-time of dimension greater than or equal to four arestudied. Gauge invariant differential constraintsfor such anomalous conformal current and shadow fieldandrealization of global conformal symmetries areobtained. Gauge invariant two-point vertex of the arbitrary spin anomalous shadow field is also obtained. In Stueckelberg gauge frame, the two-point gaugeinvariantvertexbecomesthestandardtwo-pointvertexofCFT.Light-conegaugetwo-pointvertexofthe arbitraryspinanomalousshadowfieldisderived. TheAdS/CFTcorrespondenceforarbitraryspinanomalous conformal current andshadow fieldandtherespectivenormalizableandnon-normalizable modesof massive arbitraryspinAdSfieldisstudied. TheAdSfieldisconsideredinmodifieddeDondergaugewhichsimplifies 2 considerablythestudyofAdS/CFTcorrespondence. Weshowthaton-shellleftovergaugesymmetriesofbulk 1 0 massivefieldarerelatedtogaugesymmetriesofboundaryanomalousconformalcurrentandshadowfield,while 2 themodifieddeDondergaugeconditionforbulkmassivefieldisrelatedtodifferentialconstraintsforboundary anomalousconformalcurrentandshadowfield. n a J PACSnumbers:11.25.Tq,11.15.Kc,11.40.Dw 0 3 I. INTRODUCTION AdS/CFT correspondence, spin-s anomalousconformalcur- ] rentandshadowfieldarerelatedtospin-smassiveAdSfield. h t We start with a brief recall of some basic notionsof CFT. Massivetotallysymmetricspin-sAdSfieldswithevens 4 - ≥ p Inspace-timeofdimensiond 4,fieldsofCFTcanbesepa- form leading Regge trajectory of AdS string theory. There- e ≥ fore, extension of our approach to the case of arbitrary s is ratedintotwogroups: conformalcurrentsandshadowfields. h important.Ourapproachtoanomalousconformalcurrentand [ ThisistosaythatfieldhavingLorentzalgebraspins,s 1, ≥ shadowfieldissummarizedasfollows. and conformal dimension ∆ = s + d 2 is referred to as 3 − i)Startingwiththefieldcontentofanomalousconformalcur- v conformalcurrentwithcanonicaldimension,whilefieldhav- 9 ingLorentzalgebraspin s, s 1, andconformaldimension rent (and anomalous shadow field) in the standard CFT, we 4 ≥ introduce Stueckelberg fields and auxiliary fields. In other ∆>s+d 2isreferredtoasanomalousconformalcurrent. 7 − words,weextendspaceoffieldsenteringthestandardCFT. 3 Accordingly,fieldhavingLorentzalgebraspins,s 1,and . conformaldimension∆=2 sisreferredtoasshad≥owfield ii) On the extended space of fields entering our approach, 0 1 withcanonicaldimension1,w−hilefieldhavingLorentzalgebra we introduce differential constraints, gauge transformations, 1 andconformalalgebratransformations. Thedifferentialcon- spins,s 1,andconformaldimension∆<2 sisreferred 1 ≥ − straintsarerequiredtobeinvariantunderthegaugetransfor- toasanomalousshadowfield. : v mationsandtheconformalalgebratransformations. In Refs.[3, 4], we developed the gauge invariant formu- i X iii) Thegaugesymmetriesandthe differentialconstraintsal- lation of the conformal currents and shadow fields having lowustomatchourapproachandthestandardCFT.Namely, r the canonical conformal dimensions. We recall that, in the a by imposing gauge conditions to exclude the Stueckelberg frameworkofAdS/CFTcorrespondence,suchconformalcur- fields and by solving differential constraints to exclude the rentsandshadowfieldsarerelatedtomasslessAdSfields. In auxiliaryfields, we obtainformulationofanomalousconfor- Ref.[5], weextendedourapproachtothecase oflow spin-s, malcurrentandshadowfieldinthestandardCFT. s = 1,2, anomalous conformal currents and shadow fields. The purpose of this paper is to develop gauge invariant ap- Besides the gauge invariant approach, we discuss the proach to bosonic totally symmetric arbitrary spin-s anoma- anomalous conformal current and shadow field by using lousconformalcurrentandshadowfield. Intheframeworkof Stueckelberggaugeandlight-conegaugeconditions.Reasons fordiscussingthesetwogaugeconditionsareasfollows. i) The Stueckelberggaugereducesour approachto the stan- ∗Electronicaddress:[email protected] dardformulationofCFT.ThisistosaythatuseoftheStueck- 1 Shadowfieldshavingthecanonicaldimensionareusedtobuildconformal elberg gauge allows us to demonstrate how the standard ap- invariantequationsofmotionandLagrangianformulationsforconformal proach to anomalous conformal current and shadow field is fieldsinRefs.[1]. Interestingdiscussionofshadowfielddualitiesmaybe foundinRef.[2]. connectedwithourgaugeinvariantapproach. 2 ii)StudyingofCFTinthelight-conegaugeframeismotivated iv) The modified de Donder gauge for massive bulk field is bytheconjectureddualityofthesupersymmetricYang-Mills related to the differentialconstraintfor boundaryanomalous theory and AdS superstring theory [6]. We expect, by anal- conformalcurrent(oranomalousshadowfield). ogywithflatspace,thataquantizationofthetypeIIBGreen- v) On-shell leftover gauge symmetries of massive bulk field Schwarz AdS superstring [7] will be straightforwardonly in are related to the gauge symmetries of boundaryanomalous the light-cone gauge [8–10]. Therefore we think that, from conformalcurrent(oranomalousshadowfield). thestringyperspectiveofAdS/CFTcorrespondence,thelight- Ourpaperisorganizedasfollows. cone approach to CFT deserves to be understood better. In InSec. II,wesummarizeournotationandconventions. thisrespect,wenotethatourapproachprovidesquickaccess SectionIIIisdevotedtogaugeinvariantformulationofarbi- tothelight-conegaugeformulationofCFT.Thisimpliesthat traryspin-sanomalousconformalcurrent. We discussgauge our approach gives easy access to the studying of AdS/CFT symmetriesandrealizationofglobalconformalalgebrassym- correspondenceinlight-conegauge. Thisseemstobeimpor- metriesonspaceofgaugefieldsweuseforthedescriptionof tantforfutureapplicationofourapproachtothestudyingof the anomalous conformalcurrent. We demonstrate how our string/gaugetheoryduality. gaugeinvariantapproachisrelatedtothestandardCFT.Also, We use our gauge invariant formulation of CFT for the usingourapproach,weobtainlight-conegaugedescriptionof studying AdS/CFT correspondence between arbitrary spin thearbitraryspin-sanomalousconformalcurrent. massiveAdSfieldandthecorrespondingarbitraryspinbound- In Sec. IV, we extend results in Sec. III to the case of aryanomalousconformalcurrentandshadowfield. Namely, arbitraryspin-sanomalousshadowfield. Also,wefindgauge we show that non-normalizable modes of arbitrary spin-s invarianttwo-pointvertexforthe arbitraryspin-sanomalous massive AdS field are related to arbitrary spin-s anomalous shadowfield.Wediscussthetwo-pointvertexinStueckelberg shadow field, while normalizable modes of arbitrary spin-s gaugeframeandinlight-conegaugeframe. massive AdS field are related to arbitrary spin-s anomalous In Sec. V, we discuss the two-point current-shadow field conformal current. We recall that, in earlier literature, the interactionvertex. AdS/CFT correspondence between non-normalizable modes InSec. VI,wereviewtheCFTadaptedgaugeinvariantap- of massivespin-1andspin-2AdSfields andthe correspond- proachtomassivearbitraryspinAdSfield.Becausetheuseof ing spin-1 and spin-2 anomalous shadow fields was studied themodifieddeDondergaugemakesourstudyofAdS/CFT in Refs.[11, 12]. The AdS/CFT correspondence for spin-s correspondenceforarbitraryspinfieldssimilartotheonefor massive AdS field with s > 2 and the correspondingspin-s scalar field, we briefly review the AdS/CFT correspondence anomalousconformalcurrentand shadow field has not been forthescalarfield. consideredintheearlierliterature.OurtreatmentofAdS/CFT Section VII is devoted to the study of AdS/CFT corre- correspondenceissummarizedasfollows. spondence between normalizable modes of massive spin-s i) We exploit the CFT adapted gauge invariant approach to AdS field and spin-s anomalous conformal current, while, massive AdS fields and modified de Donder gauge obtained inSec.VIII, westudythe AdS/CFT correspondencebetween inRefs.[13,14]. ThemodifieddeDondergaugeleadstothe non-normalizable modes of massive spin-s AdS field and simple decoupledbulk equationsof motion which are easily spin-sanomalousshadowfield. solved. We show that the two-point gauge invariant vertex SectionIXsummarizesourconclusionsandsuggestsdirec- of the arbitrary spin-s anomalous shadow field does indeed tionsforfutureresearch. emergefrom massivearbitraryspin-sAdS field action when In Appendix, we present some details of matching of the itisevaluatedonsolutionoftheDirichletproblem. Through- bulkandboundaryconformalboostsymmetries. out this paper the AdS field action evaluated on the solution oftheDirichletproblemisreferredtoaseffectiveaction. ii) The numberof boundarygaugefields involvedin ourap- II. PRELIMINARIES proach to the anomalous conformal current (or anomalous shadow field) coincides with the number of gauge fields in- A. Notation volvedintheCFT adaptedformulationofmassiveAdSfield inRef.[14]. We use the following conventions. The Cartesian coor- iii)Thenumberofgaugetransformationparametersinvolved dinates in d-dimensional flat space-time are denoted by xa, in our approach to the anomalous conformal current (or whilederivativeswithrespecttoxa aredenotedby∂ ,∂ a a ≡ anomalousshadowfield)coincideswiththenumberofgauge ∂/∂xa. ThevectorindicesoftheLorentzalgebraso(d 1,1) − transformationparametersinvolvedintheCFTadaptedgauge takethevaluesa,b,c,e=0,1,...,d 1. Weusethemostly − invariantformulationofmassiveAdSfieldinRef.[14]. positiveflatmetrictensorηaband,tosimplifyourexpressions, 3 wedropη inscalarproducts:XaYa η XaYb. Creation α∂ αa∂a, α¯∂ α¯a∂a, (2.5) ab ab ≡ ≡ ≡ operatorsαa, αz, ζ andthe respectiveannihilationoperators α¯a, α¯z, ζ¯are referred to as oscillators.2 Commutation rela- α2 ≡αaαa, α¯2 ≡α¯aα¯a, (2.6) tionsoftheoscillators,thevacuum|0i,andhermitianconju- Nα αaα¯a, Nz αzα¯z, Nζ ζζ¯, (2.7) gationrulesaredefinedas ≡ ≡ ≡ Mab αaα¯b αbα¯a, (2.8) [α¯a,αb]=ηab, [α¯z,αz]=1, [ζ¯,ζ]=1, (2.1) ≡ − 1 Π[1,2] 1 α2 α¯2, (2.9) α¯a 0 =0, α¯z 0 =0, ζ¯0 =0, (2.2) ≡ − 2(2N +d) α | i | i | i αa† =α¯a, αz† =α¯z, ζ† =ζ¯. (2.3) µ 1 1α2α¯2, (2.10) ≡ − 4 The oscillators αa, α¯a and αz, ζ, α¯z, ζ¯transform in the re- 1 spective vector and scalar representations of the Lorentz al- Ca αa α2 α¯a, (2.11) ≡ − 2N +d 2 α gebra so(d 1,1). Throughoutthis paper we use operators − − e 1 constructedoutofthederivatives,coordinates,andtheoscil- C¯a α¯a αaα¯2, (2.12) ⊥ ≡ − 2 lators, ✷ ∂a∂a, x∂ xa∂a, x2 xaxa, (2.4) ≡ ≡ ≡ 2 Weuseoscillatorstohandlethemanyindicesappearingfortensorfields (discussionofoscillatorformulationmaybefoundinRefs.[15,16].) 1/2 (s+ d−4 N )(κ s d−4 +N )(κ+1+N ) r 2 − ζ − − 2 ζ ζ , ζ ≡ 2(s+ d−24 −Nζ −Nz)(κ+Nζ −Nz)(κ+Nζ −Nz +1)! (2.13) 1/2 (s+ d−4 N )(κ+s+ d−4 N )(κ 1 N ) r 2 − z 2 − z − − z , z ≡ 2(s+ d−24 −Nζ −Nz)(κ+Nζ −Nz)(κ+Nζ −Nz −1)! where parameter κ appearing in (2.13) is defined below in (3.4). Throughout the paper the notation λ [n] implies that 2 ∈ λ= n, n+2, n+4,...,n 4,n 2,n: − − − − − λ [n] = λ= n, n+2, n+4,...,n 4,n 2,n. (2.14) 2 ∈ ⇒ − − − − − Often,weusethefollowingsetofscalar,vector,andtotallysymmetrictensorfieldsoftheLorentzalgebraso(d 1,1): − φa1...as′ , s′ =0,1,...,s, λ [s s′] , (2.15) λ ∈ − 2 whereφa1...as′ isrank-s′totallysymmetrictracefultensorfieldoftheLorentzalgebraso(d 1,1).Toillustratethefieldcontent giveninλ(2.15),weuseshortcutφs′ forthefieldφa1...as′ andnotethatfieldsin(2.15)canb−erepresentedas λ λ φs 0 φs−1 φs−1 −1 1 ... ... ... (2.16) φ1 φ1 ... φ1 φ1 1−s 3−s s−3 s−1 φ0 φ0 ... φ0 φ0 −s 2−s s−2 s Our conventionsfor light-cone frame are as follows. The where the coordinates in directions are defined as x± = ± space-timecoordinatesare decomposedasxa = x+,x−,xi, 4 (xd−1 x0)/√2 and x+ is taken to be a light-cone time. is equal to zero, while, in the gauge invariant approach to ± Vector indices of the so(d 2) algebra take values i,j = anomalousconformalcurrentandshadowfieldwedevelopin − 1,...,d 2.Weusethefollowingconventionsforthederiva- this paper, the operator Ra is nontrivial. This is to say that, − tives: in the framework of our gauge invariantapproach, the com- plete description of the conformal current and shadow field ∂i =∂ ∂/∂xi, ∂± =∂ ∂/∂x∓. (2.17) i ≡ ∓ ≡ requires,amongotherthings,findingtheoperatorRa. B. Globalconformalsymmetries III. ARBITRARYSPINANOMALOUSCONFORMAL CURRENT In d-dimensional flat space-time, the conformal algebra so(d,2)consistsoftranslationgeneratorsPa,dilatationgen- A. Gaugeinvariantformulation erator D, conformalboostgeneratorsKa, and generatorsof the so(d 1,1) Lorentz algebra Jab. We use the following Field content. To developgaugeinvariantformulationof − nontrivialcommutatorsoftheconformalalgebra: arbitraryspin-sanomalousconformalcurrentinflatspaceof [D,Pa]= Pa, [Pa,Jbc]=ηabPc ηacPb, dimensiond 4weusethefollowingfields: ≥ − − [D,Ka]=Ka, [Ka,Jbc]=ηabKc ηacKb, φacu1r..,.λas′ , s′ =0,1,...,s, λ∈[s−s′]2. (3.1) − (2.18) Wenotethat: [Pa,Kb]=ηabD Jab, − i) In (3.1), the fields φ and φa are the respective cur,λ cur,λ [Jab,Jce]=ηbcJae+3terms. scalarandvectorfieldsoftheLorentzalgebra,whilethefield φa1...as′, s′ > 1, is rank-s′ totally symmetric tracefultensor cur,λ Letφdenotesanomalousconformalcurrent(oranomalous fieldofthe Lorentzalgebraso(d 1,1). Usingshortcutφs′ shadowfield)inthed-dimensionalflatspace-time. Underthe for the field φa1...as′, fields in (3.−1) can be representedas iλn actionofconformalalgebra,theφtransformsas cur,λ (2.16). δGˆφ=Gˆφ, (2.19) ii) The tensor fields φacu1r..,.λas′ with s′ ≥ 4 satisfy the double- tracelessnessconstraint where the realization of the conformalalgebra generatorsGˆ onspaceofφisgivenby φaabba5...as′ =0, s′ =4,5,...,s. (3.2) cur,λ Pa =∂a, (2.20) iii) The fields φa1...as′ have the followingconformaldimen- Jab =xa∂b xb∂a+Mab, (2.21) cur,λ − sions: D =x∂+∆, (2.22) d ∆(φa1...as′)= +κ+λ. (3.3) cur,λ 2 Ka =Ka +Ra, (2.23) ∆,M iv)IntheframeworkofAdS/CFTcorrespondence,κisrelated 1 tothemassparametermofspin-smassivefieldinAdS as Ka x2∂a+xaD+Mabxb. (2.24) d+1 ∆,M ≡−2 d 4 2 In relations (2.21)-(2.23), ∆ is an operator of conformaldi- κ m2+ s+ − . (3.4) ≡ 2 mension,whileMabisaspinoperatoroftheLorentzalgebra, r (cid:16) (cid:17) In order to obtain the gauge invariant description in an [Mab,Mce]=ηbcMae+3terms. (2.25) easy–to–useformwe use the oscillatorsandintroducea ket- The spin operator of the Lorentz algebra is well known for vector φcur definedby | i arbitraryspinanomalousconformalcurrentandshadowfield s (see (2.8)). In general, operator Ra appearing in (2.23) de- φ = φs′ , (3.5) | curi | curi pends on the derivatives and does not depend on the space- s′=0 X time coordinates.3 In the standard CFT, the operator Ra thispaper,theoperatorRaisindependentofthederivatives. Dependence of the operator Ra onthe derivatives appears in the ordinary-derivative 3 Forthe anomalous conformal currents andshadow fields considered in approachtoconformalfields(seeRefs.[17]-[19]). 5 φs′ ii)Thegaugetransformationparametersξa1...as′ withs′ 2 | curi cur,λ ≥ satisfythetracelessnessconstraint, s−s′+λ s−s′−λ = ζ 2 αz 2 αa1...αas′ φa1...as′ 0 . ξaaa3...as′ =0, s′ =2,3,...,s 1. (3.13) λ∈[Xs−s′]2 s′! (s−s2′+λ)!(s−s2′−λ)! cur,λ | i iii) Thecugra,λuge transformation parameters ξ−a1...as′ have the q cur,λ conformaldimensions From (3.5), we see that the ket-vector φ is degree-sho- cur | i mogeneouspolynomialintheoscillatorsαa,αz,ζ,whilethe ∆(ξa1...as′)= d +κ+λ 1. (3.14) ket-vector φs′ isdegree-s′homogeneouspolynomialinthe cur,λ 2 − | curi oscillatorsαa,i.e.,theseket-vectorssatisfytherelations Now, as usually, we collect the gauge transformation pa- rametersinaket-vector ξ definedby cur | i (N +N +N s)φ =0, (3.6) α z ζ cur − | i s−1 (Nα−s′)|φscu′ri=0. (3.7) |ξcuri=s′=0|ξcsu′ri, (3.15) X In terms of the ket-vector φcur , double-tracelessness con- ξs′ straint(3.2)takestheform4| i | curi s−1−s′+λ s−1−s′−λ (α¯2)2 φ =0. (3.8) = ζ 2 αz 2 αa1...αas′ ξa1...as′ 0 . | curi λ∈[sX−1−s′]2 s′! (s−1−2s′+λ)!(s−1−2s′−λ)! cur,λ | i Differentialconstraint. Wefindthefollowingdifferential q Theket-vectors ξ , ξs′ satisfythealgebraicconstraints constraintfortheanomalousconformalcurrent: | curi | curi (N +N +N s+1)ξ =0, (3.16) α z ζ cur C¯ φ =0, (3.9) − | i cur cur | i (N s′)ξs′ =0, (3.17) 1 1 α− | curi C¯ =α¯∂ α∂α¯2 e¯ Π[1,2]+ e α¯2, (3.10) cur − 2 − 1,cur 2 1,cur whichtellusthat ξ isadegree-(s 1)homogeneouspoly- cur e1,cur =ζrζ✷+αzrz, nomialintheosci|llatoirsαa,αz,ζ,w−hiletheket-vector|ξcsu′ri (3.11) isdegree-s′homogeneouspolynomialintheoscillatorsαa.In e¯1,cur =−rζζ¯−rzα¯z✷, terms of the ket-vector |ξcuri, tracelessness constraint(3.13) takestheform wherethe operatorsΠ[1,2], r , r aredefinedin (2.9), (2.13). ζ z α¯2 ξ =0. (3.18) One can make sure that constraint (3.9) is invariant under | curi gaugetransformationand conformalalgebratransformations Gauge transformation can entirely be written in terms of whichwediscussbelow. φ and ξ . This is to say that gauge transformation cur cur | i | i Gaugesymmetries. Wenowdiscussgaugesymmetriesof takestheform the anomalous conformal current. To this end we introduce δ φ =G ξ , (3.19) thefollowinggaugetransformationparameters: | curi cur| curi 1 ξcau1r.,.λ.as′ , s′ =0,1,...,s−1, λ∈[s−1−s′]2. Gcur ≡α∂−e1,cur−α22Nα+d−2e¯1,cur, (3.20) (3.12) where e , e¯ are given in (3.11). As we have already 1,cur 1,cur Wenotethat said, constraint(3.9) is invariantundergaugetransformation i) In (3.12), the gauge transformation parameters ξ and cur,λ (3.19). ξa aretherespectivescalarandvectorfieldsoftheLorentz cur,λ Realizationof conformalalgebra symmetries. To com- algebra, while the gauge transformation parameter ξa1...as′, cur,λ pletethegaugeinvariantformulationofthespin-sanomalous s′ >1,isrank-s′totallysymmetrictensorfieldoftheLorentz conformalcurrentweproviderealizationoftheconformalal- algebraso(d 1,1). − gebrasymmetriesonspaceoftheket-vector φcur . Allthatis | i neededistofixtheoperatorsMab,∆,andRaandinsertthen theseoperatorsinto(2.20)-(2.23). Realizationofthespinop- 4 Inthispaperweadapttheformulationintermsofthedoubletracelless eratorMab onket-vector φcur (3.5)isgivenin(2.8), while | i gaugefields [20]. Todevelop thegaugeinvariant approach onecanuse realizationoftheoperator∆, unconstrainedgaugefieldsstudiedinRefs.[21].Discussionofothergauge fieldswhichseemtobemostsuitable forthetheoryofinteracting fields d ∆ = +ν, ν κ+N N , (3.21) maybefound,e.g.,in[22]. cur 2 ≡ ζ − z 6 can be read from (3.3). In the gauge invariant formulation, ( )s−s′ 2s−s′Γ(κ s d−4)Γ(κ+s s′) 1/2 X − − − 2 − . finding the operator Ra providesthe real difficulty. We find cur≡(s s′)! Γ(κ s′ d−4)Γ(κ) thefollowingrealizationoftheoperatorRaonspaceof φ : − (cid:16) − − 2 (cid:17) | curi Relation (3.25) tells us that all fields φa1...as′ with s′ 2 cur,λ ≥ Ra = 2ζr (ν+1)α¯a C¯a becometraceless.Fromrelation(3.26),welearnthatthefields cur − ζ − ⊥ φa1...as′ withλ=s s′becomeequaltozero,whilethefields (cid:16) (cid:17) cur,λ 6 − 1 φa1...as′ withλ=s s′ands′ =0,1,...s 1areexpressed − 2 νCa+α22N +d 2C¯⊥a rzα¯z, (3.22) incuter,rλmsoftherank-−stracelesstensorfieldφ−a1...as, (cid:16) α − (cid:17) cur,0 wheretheoperatoresCa,C¯a aregivenin(2.11),(2.12),while φa1...as′ =0, for λ=s s′, (3.27) ⊥ cur,λ 6 − theoperatorsr ,r aredefinedin(2.13). ζ z We derived the diefferential constraint, gauge transforma- φacu1r..,.sa−s′s′ = (s−s′)!Xcur∂b1...∂bs−s′φbc1u.r.,.0bs−s′a1...as′ . tion,andtherealizationoftheoperatorRcaur bygeneralizing p (3.28) ourresultsforthespin-sconformalcurrentwiththecanonical We recall that, in the standard CFT, the spin-s anomalous dimensionwhichwe obtainedin Ref.[3]. Itisworthwhileto conformalcurrentis describedby the tracelessfield φa1...as. notethatresultsinthissectioncanalsobeobtainedbyusing cur,0 Thus we see that making use of the gauge symmetry and thetractorapproachinRefs.[23,24]5.Ourconstraint(3.9)and differentialconstraint we reduce the field content of our ap- gaugetransformation(3.19)canbematchedwiththeonesin proachtotheoneinthestandardCFT.Inotherwords,useof Ref.[23]byusingappropriatefieldredefinitions. Thebasisof the gauge symmetry and differential constraint allows us to thefieldsweuseinthispaperturnsouttobemoreconvenient matchourapproachandthestandardformulationofthespin- forthestudyofAdS/CFTcorrespondence.Tosummarize,our s anomalous conformal current6. To summarize, our gauge fields(3.1)canbewrittenasatractorrank-stensorfieldsub- invariantapproachisequivalenttothestandardone. jecttoaThomas-DdivergencetypeconstraintinRef.[23]. A similarconstructionwasusedtodescribespin-smassivebulk fieldinRef.[23]. Notethat,inourapproach,weuseourfields C. Light-conegaugeframe (3.1) for the discussion of spin-s anomalous conformal cur- rent. Wenowdiscussthespin-sanomalousconformalcurrentin thelight-conegaugeframe. Tothisendwenotethat,forthe anomalous conformalcurrent, the light-cone gauge frame is B. Stueckelberggaugeframe achieved through the use of differential constraint (3.9) and light-cone gauge condition. Using gauge symmetry of the We proceedwith discussion of the spin-s anomalouscon- spin-s anomalous conformal current (3.19), we impose the formalcurrentin the Stueckelberggaugeframe. To this end light-conegaugeonthe φ , wenotethattheStueckelberggaugeframeisachievedthrough | curi the use of differential constraint (3.9) and the Stueckelberg α¯+Π[1,2] φ =0, (3.29) cur | i gaugecondition.From(3.19),weseethatafielddefinedby whereΠ[1,2] isgivenin(2.9). Usinggauge(3.29)anddiffer- α¯zΠ[1,2] φ (3.23) entialconstraint(3.9),wefind cur | i α+ transformsas Stueckelbergfield. Thereforethis field can be φ =exp (α¯i∂i e¯ ) φl.c. , (3.30) | curi −∂+ − 1cur | curi gaugedawayviaStueckelberggaugefixing, (cid:16) (cid:17) α¯iα¯i φl.c. =0, (3.31) α¯zΠ[1,2] φ =0, (3.24) | curi cur | i where a light-cone ket-vector φl.c. is obtained from φ where Π[1,2] is given in (2.9). Using gauge condition (3.24) (3.5)byequatingα+ =α− =|0,curi | curi anddifferentialconstraint(3.9),wefindtherelations φl.c. φ . (3.32) α¯2 φs′ =0, (3.25) | curi≡| curi α+=α−=0 | curi (cid:12) (cid:12) φs′ =X ζs−s′(α¯∂)s−s′ φs , (3.26) (cid:12) | curi cur | curi 6 Wenotethat,asinthestandardCFT,ourcurrentscanbeconsideredeither ascompositeoperatorsorasfundamentalfielddegreesoffreedom.Atthe group theoretical level, we study in this paper, this distinction does not 5 Inmathematicalliterature, interestingdiscussionofthetractorapproach matter. Methodsforbuildingconformalcurrents ascompositeoperators maybefoundinRef.[25]. arediscussedinRefs.[26]. 7 Weseethatweareleftwithlight-conefields From (4.4), we see that the ket-vector φ is degree-s ho- sh | i mogeneouspolynomialintheoscillatorsαa,αz,ζ,whilethe φic1u.r.,.λis′ , s′ =0,1,...,s, λ∈[s−s′]2, (3.33) ket-vector φs′ isdegree-s′ homogeneouspolynomialinthe | shi which are traceless tensor fields of so(d 2) algebra, oscillatorsαa,i.e.,theseket-vectorssatisfytherelations − φiii3...is′ = 0. Thesefieldsconstitutethefieldcontentofthe cur,λ (N +N +N s)φ =0, (4.5) α z ζ sh light-conegaugeframe. Note that, in contrasttothe Stueck- − | i elberg gauge frame, all fields φi1...is′ are not equal to zero. (N s′)φs′ =0. (4.6) cur,λ α− | shi Alsonotethat,incontrasttothegaugeinvariantapproach,the In terms of the ket-vector φ , double-tracelessness con- fields(3.33)arenotsubjecttoanydifferentialconstraint. | shi straint(4.2)takestheform (α¯2)2 φ =0. (4.7) IV. ARBITRARYSPINANOMALOUSSHADOWFIELD | shi Differentialconstraint. Wefindthefollowingdifferential A. Gaugeinvariantformulation constraintfortheanomalousshadowfield: Field content. To discuss gauge invariant formulation of C¯sh φsh =0, (4.8) | i arbitrary spin-s anomalous shadow field in flat space of di- 1 1 C¯ =α¯∂ α∂α¯2 e¯ Π[1,2]+ e α¯2, (4.9) mensiond 4weusethefollowingfields: sh 1,sh 1,sh − 2 − 2 ≥ φash1,.λ..as′ , s′ =0,1,...,s, λ∈[s−s′]2. (4.1) e1,sh =ζrζ +αzrz✷, (4.10) Wenotethat: e¯ = r ζ¯✷ r α¯z, 1,sh ζ z i)In(4.1),thefieldsφ andφa aretherespectivescalar − − sh,λ sh,λ and vector fields of the Lorentz algebra, while the field wheretheoperatorsΠ[1,2], rζ, rz aredefinedin(2.9), (2.13). φa1...as′, s′ > 1, is rank-s′ totally symmetrictracefultensor One can make sure that constraint (4.8) is invariant under sh,λ field oftheLorentzalgebraso(d 1,1). Usingshortcutφs′ gaugetransformationand conformalalgebratransformations for the field φa1...as′, fields in (4.−1) can be representedas iλn whichwediscussbelow. sh,λ Gaugesymmetries. Wenowdiscussgaugesymmetriesof (2.16). ii) The tensorfields φa1...as′ with s′ 4 satisfy the double- the anomalous shadow field. To this end we introduce the sh,λ ≥ followinggaugetransformationparameters: tracelessnessconstraint φsaha,bλba5...as′ =0, s′ =4,5,...,s. (4.2) ξsah1,.λ..as′ , s′ =0,1,...,s−1, λ∈[s−1−(s4′].211.) Wenotethat iii) The fields φa1...as′ have the followingconformaldimen- i) In (4.11), the gauge transformation parameters ξ and sh,λ sh,λ sions: ξa aretherespectivescalarandvectorfieldsoftheLorentz sh,λ ∆(φash1,.λ..as′)= d2 −κ+λ, (4.3) sal′g>eb1ra,,iswrahnilke-sth′etogtaalulygesytmramnseftorricmtaetniosonrpfiaerladmoefttehreξLsah1o,.rλ.e.anst′z, algebraso(d 1,1). iv)IntheframeworkofAdS/CFTcorrespondence,κisrelated − ii)Thegaugetransformationparametersξa1...as′ withs′ 2 tothemassparametermofspin-smassivefieldinAdSd+1as sh,λ ≥ satisfythetracelessnessconstraint in(3.4). In order to obtain the gauge invariant description in an ξaaa3...as′ =0, s′ =2,3,...,s 1. (4.12) sh,λ − easy–to–useformwe use the oscillatorsandintroducea ket- vector φsh definedby iii) The gauge transformation parameters ξsah1,.λ..as′ have the | i conformaldimensions s |φshi=s′=0|φssh′i, (4.4) ∆(ξsah1,.λ..as′)= d2 −κ+λ−1. (4.13) X φs′ Now, as usually, we collect the gauge transformation pa- | shi rametersinaket-vector ξ definedby sh s−s′−λ s−s′+λ | i =λ∈[Xs−s′]2ζs′!2 (sα−zs2′+2λ)!α(sa−1s.2′.−.λα)a!s′ φash1,.λ..as′|0i. |ξshi=ss′−=10|ξssh′i, (4.14) X q 8 ξs′ to say that we find the following gauge invariant two-point | shi vertex: s−1−s′−λ s−1−s′+λ = ζ 2 αz 2 αa1...αas′ ξa1...as′ 0 . Γ= ddx ddx Γ , (4.22) λ∈[sX−1−s′]2 s′! (s−1−2s′+λ)!(s−1−2s′−λ)! sh,λ | i Z 1 2 12 q 1 µf Theket-vectors|ξshi,|ξssh′isatisfythealgebraicconstraints Γ12 = 2hφsh(x1)||x12|2νν+d|φsh(x2)i, (4.23) (N +N +N s+1)ξ =0, (4.15) Γ(ν+ d)Γ(ν +1) α z ζ − | shi fν = 4κ−νΓ(κ+2 d)Γ(κ+1), (4.24) (N s′)ξs′ =0, (4.16) 2 α− | shi ν =κ+N N , (4.25) ζ z − whichtellusthat ξ isadegree-(s 1)homogeneouspoly- sh nomialintheosci|llatoirsαa,αz,ζ,w−hiletheket-vector|ξssh′i |x12|2 ≡xa12xa12, xa12 =xa1 −xa2, (4.26) is degree-s′ homogeneous polynomial in the oscillators αa. where µ is given in (2.10). Vertex Γ (4.22) is invariant un- Intermsoftheket-vector|ξshi,tracelessnessconstraint(4.12) dergaugetransformationoftheanomalousshadowfield|φshi takestheform (4.18) provided this anomalous shadow field satisfies differ- entialconstraint(4.8).Thevertexisobviouslyinvariantunder α¯2 ξ =0. (4.17) sh thePoincare´algebraanddilatationsymmetries.Wemakesure | i thatvertex(4.22)isinvariantundertheconformalboosttrans- Gauge transformation can entirely be written in terms of formations. φ and ξ . Thisistosaythatgaugetransformationtakes | shi | shi To illustrate structure of the vertex Γ12 we note that, in theform terms of the tensor fields φa1...as′, vertex Γ (4.23) can be sh,λ 12 representedas δ φ =G ξ , (4.18) sh sh sh | i | i s 1 Γ = Γs′ , (4.27) G =α∂ e α2 e¯ , (4.19) 12 12,λ sh − 1,sh− 2Nα+d−2 1,sh sX′=0λ∈[Xs−s′]2 where e1,sh, e¯1,sh are givenin (4.10). Constraint(4.8) is in- Γs′ = wλ φa1...as′(x )φa1...as′(x ) variantundergaugetransformation(4.18). 12,λ 2s′!x 2κ−2λ+d sh,λ 1 sh,λ 2 12 Realizationof conformalalgebra symmetries. To com- | | (cid:16) pletethegaugeinvariantformulationofthespin-sanomalous s′(s′ 1) − φaaa3...as′(x )φbba3...as′(x ) , (4.28) shadowfieldweproviderealizationoftheconformalalgebra − 4 sh,λ 1 sh,λ 2 (cid:17) symmetries on space of the ket-vector φ . All that is re- sh | i quiredistofixtheoperatorsMab,∆,andRa andinsertthen Γ(κ λ+ d)Γ(κ λ+1) theseoperatorsinto(2.20)-(2.23). Realizationofthespinop- wλ ≡ 4λ−Γ(κ+2d)Γ(κ−+1) . (4.29) erator Mab on ket-vector φ (4.4) is given in (2.8), while 2 sh | i We note that the kernel of the vertex Γ is connected with realizationoftheoperator∆, a two-pointcorrelationfunctionof theanomalousconformal d current. In the framework of our approach, the anomalous ∆ = ν, ν =κ+N N , (4.20) sh 2 − ζ − z conformal current is described by gauge fields (3.1) subject to differential constraints. In order to discuss the correla- can be read from (4.3). Realization of the operator Ra on tion function of the spin-s anomalous conformal current in spaceof φ ,whichwefind,isgivenby sh | i aproperway,wecanimposeagaugeconditiononthegauge fieldsgivenin(3.1). Recallthatwehaveconsideredthespin- Ra = 2αzr (ν 1)α¯a+C¯a sh z − ⊥ sanomalousconformalcurrentbyusingtheStueckelbergand (cid:16) (cid:17) 1 light-conegaugeframes.Obviously,thetwo-pointcorrelation + 2 νCa α2 C¯a r ζ¯, (4.21) − 2N +d 2 ⊥ ζ functionoftheanomalousconformalcurrentintheStueckel- α (cid:16) − (cid:17) berg and light-cone gauge frames is obtained from the two- e wheretheoperatorsCa,C¯a aregivenin(2.11),(2.12),while pointvertexΓtakenintherespectiveStueckelbergandlight- ⊥ theoperatorsr ,r aredefinedin(2.13). conegaugeframes. Tothisendweproceedbydiscussingthe ζ z Two-pointgaugeeinvariantvertex. We nowdiscusstwo- anomalous shadow field in the Stueckelberg and light-cone point vertex for the spin-s anomalous shadow field. This is gaugeframes. 9 B. Stueckelberggaugeframe Γstand =s! φs (x )O φs (x ) , (4.37) 12 h sh 1 | 12| sh 2 i We now discuss the spin-s anomalousshadow field in the s ( )n2n(αx )n(α¯x )n Stueckelberg gauge frame. We note that the Stueckelberg O12 ≡ −n! x122κ+d+122n , (4.38) 12 gauge frame can be achieved through the use of differential nX=0 | | constraint given in (4.8) and the Stueckelberg gauge condi- 2κ+2s+d 2 tion. From(4.18),weseethatafielddefinedby k − , (4.39) s ≡ 2s!(2κ+d 2) − ζ¯Π[1,2] φ (4.30) sh | i where αx = αaxa , α¯x = α¯axa and Γstand in (4.36), 12 12 12 12 12 transformsas Stueckelbergfield. Thereforethis field can be (4.37)standsforthetwo-pointvertexofthespin-sanomalous gaugedawayviaStueckelberggaugefixing, shadow field in the standard CFT. Relation (4.37) provides oscillatorrepresentationfortheΓstand. Intermsofthetensor ζ¯Π[1,2] φ =0. (4.31) 12 | shi field φa1...as, vertex Γstand (4.37) can be represented in the sh,0 12 Using this gauge condition and differential constraint (4.8), commonlyusedform, wefindthefollowingrelations: Oa1b1...Oasbs α¯2 φs′ =0, (4.32) Γs1t2and =φsah1,.0..as(x1) 12x 2κ+d12 φbsh1.,.0.bs(x2), (4.40) | shi | 12| φs′ =X αs−s′(α¯∂)s−s′ φs , (4.33) 2xa xb | shi sh z | shi Oab ηab 12 12 . (4.41) 12 ≡ − x 2 ( )s−s′ 2s−s′Γ(κ+d−2+s′)Γ(κ+1) 1/2 | 12| X − 2 . sh≡(s s′)! Γ(κ+s+d−2)Γ(κ s+1+s′) From(4.36),weseethatourgaugeinvariantvertexΓ12 con- − (cid:16) 2 − (cid:17) sideredintheStueckelberggaugeframecoincides,uptonor- Relation (4.32) tells us that all fields φash1,.λ..as′ with s′ ≥ 2 malization factor ks, with the two-point vertex in the stan- becometraceless.Fromrelation(4.33),welearnthatthefields dardCFT.InsectionIIIB,wehavedemonstratedthat,inthe φash1,.λ..as′ withλ6=s−s′becomeequaltozero,whilethefields Stueckelberg gauge frame, we are left with rank-s traceless φash1,.λ..as′ withλ=s−s′ands′ =0,1,...,s−1areexpressed tensor field φcau1r..,.0as. Two-point correlation function of this intermsoftherank-stracelesstensorfieldφsah1,.0..as, tensorfieldisdefinedbythekernelofvertexΓstand (4.40). φa1...as′ =0, for λ=s s′, (4.34) sh,λ 6 − C. Light-conegaugeframe φash1,.s..−ass′′ = (s−s′)!Xsh∂b1...∂bs−s′φbsh1.,.0.bs−s′a1...as′ . p (4.35) Weproceedwithdiscussionoftheanomalousshadowfield in the light-cone gauge frame. For the anomalous shadow We recall that, in the standard CFT, the spin-s anomalous field,thelight-conegaugeframecanbeachievedthroughthe shadow field is describedby the traceless rank-stensor field φa1...as. Thusweseethatmakinguseofthegaugesymmetry useofdifferentialconstraint(4.8)andlight-conegaugecondi- sh,0 tion. Usinggaugesymmetryofthespin-sanomalousshadow and differentialconstraintwe reduce the field contentof our field(4.18),weimposethelight-conegaugeonthe φ , approachtotheoneinthestandardCFT.Inotherwords,use | shi of the gauge symmetry and differential constraint allows us α¯+Π[1,2] φ =0, (4.42) sh to match our approach and the standard formulation of the | i anomalousshadowfield. To summarize, ourgaugeinvariant where Π[1,2] is given in (2.9). Using gauge condition (4.42) approachisequivalenttothestandardone. anddifferentialconstraint(4.8),weobtain WenowdiscussStueckelberggauge-fixedtwo-pointvertex oftheanomalousshadowfield. Inotherwords,wearegoing α+ φ =exp (α¯i∂i e¯ ) φl.c. , (4.43) toconnectourvertex(4.22)withtheoneinthestandardCFT. | shi −∂+ − 1sh | sh i (cid:16) (cid:17) TodothatwenotethatvertexofthestandardCFTisobtained α¯iα¯i φl.c. =0, (4.44) fromourgaugeinvariantvertex(4.22)bypluggingsolutionto | sh i thedifferentialconstraint(4.33)into(4.22).Doingso,wefind where a light-cone ket-vector φl.c. is obtained from φ thefollowingtwo-pointdensity(uptototalderivative)inthe | sh i | shi (4.4)byequatingα+ =α− =0, Stueckelberggaugeframe: ΓS12tuck.g.fram =ksΓs1t2and, (4.36) |φls.hc.i≡|φshi α+=α−=0. (4.45) (cid:12) (cid:12) (cid:12) 10 Weseethatweareleftwithlight-conefields V. TWO-POINTCURRENT-SHADOWFIELD INTERACTIONVERTEX φi1...is′ , s′ =0,1,...,s, λ [s s′] , (4.46) sh,λ ∈ − 2 Wenowbrieflydiscussthetwo-pointcurrent-shadowfield which are traceless tensor fields of so(d 2) algebra, φiii3...is′ = 0. Thesefieldsconstitutethefield−contentofthe interactionvertex. In ourapproach,thisinteractionvertexis sh,λ determinedbyrequiringthat: light-conegaugeframe. Note that, in contrasttothe Stueck- elberg gauge frame, all fields φi1...is′ are not equal to zero. i)thevertexisinvariantunderbothgaugetransformationsof sh,λ anomalousconformalcurrentandshadowfield; Also note that, in contrast to the gauge invariant approach, ii) vertex is invariant under conformal algebra transforma- fields(4.46)arenotsubjecttoanydifferentialconstraint. Us- tions. ing(4.43)in(4.23)leadstolight-conegauge-fixedvertex Wefindthefollowingvertex: 1 f Γl.c. = φl.c.(x ) ν φl.c.(x ) , (4.47) 12 2h sh 1 ||x12|2ν+d| sh 2 i L=hφcur|µ|φshi, (5.1) wheref isdefinedin(4.24). whereµisgivenin(2.10).Wenotethat,undergaugetransfor- ν ToillustratethestructureofvertexΓl.c.(4.47)wenotethat, mationoftheanomalousconformalcurrent(3.19),thevaria- 12 intermsofthefieldsφi1...is′,thevertexcanberepresentedas tionofvertex(5.1)takestheform(uptototalderivative) sh,λ Γl.c. = s Γs′l.c., (4.48) δξcurL=−hξcur|C¯sh|φshi. (5.2) 12 12,λ sX′=0λ∈[Xs−s′]2 From(5.2),weseethatthevertex isinvariantundergauge L transformationof the anomalousconformalcurrentprovided Γs′l.c.= wλ φi1...is′(x)φi1...is′(x), (4.49) the anomalous shadow field satisfies differential constraint 12,λ 2s′!x 2κ−2λ+d sh,λ 1 sh,λ 2 | 12| (4.8). Next, we note that under gauge transformation of the where w is given in (4.29). We see that, as in the case of anomalousshadow field (4.18) the gauge variation of vertex λ gauge invariant vertex, light-cone vertex (4.48) is diagonal (5.1)takestheform(uptototalderivative) with respect to the light-cone fields φi1...is′. Note however that, in contrast to the gauge invariantsvh,eλrtex, the light-cone δξshL=−hξsh|C¯cur|φcuri. (5.3) vertexisconstructedoutofthelight-conefieldswhicharenot From(5.3),weseethatthevertex isinvariantundergauge subjecttoanydifferentialconstraints. L transformation of the anomalous shadow field provided the Thus, we see that our gauge invariant vertex does indeed anomalous conformal current satisfies differential constraint provideeasyandquickaccesstothelight-conegaugevertex. (3.9). Namely, all that is needed to obtain light-cone gauge vertex Usingtherealizationoftheconformalalgebrasymmetries (4.48)istoremovetracesofthetensorfieldsφa1...as′ andre- sh,λ obtainedinSectionsIII,IV,wemakesurethatvertex (5.1) placetheso(d 1,1)Lorentzalgebravectorindicesappear- L − isinvariantundertheconformalalgebratransformations. ing in gauge invariant vertex (4.23) by the respective vector indicesoftheso(d 2)algebra. − Thekernelofthelight-conevertexgivesthetwo-pointcor- VI. ADS/CFTCORRESPONDENCE.PRELIMINARIES relation function of the spin-s anomalous conformal current takentobeinthelight-conegauge.Definingtwo-pointcorre- We now study the AdS/CFT correspondence for free ar- lationfunctionsofthefieldsφi1...is′ asthesecondfunctional bitrary spin massive AdS field and boundary arbitrary spin cur,λ derivativeofΓ with respectto theshadowfieldsφi1...is′, we anomalousconformalcurrentandshadowfield. Tostudythe sh,−λ obtainthefollowingcorrelationfunctions: AdS/CFT correspondence we use the gauge invariant CFT adapted formulation of massive AdS field and modified de hφic1u.r.,.λis′(x1),φcj1u.r.,.λjs′(x2)i Donder gauge condition found in Ref.[14].7 We emphasize w = −λ Πi1...is′;j1...js′ , (4.50) x 2κ+2λ+d 12 | | 7 ApplicationsofthestandarddeDondergaugetothevariousproblemsof where wλ is defined in (4.29) and Πi1...is′;j1...js′ stands for masslessfieldsmaybefoundinRefs.[28].Recentinterestingdiscussionof theprojectorontracelessrank-s′tensorfieldoftheso(d 2) modifieddeDondergaugemaybefoundinRef.[29]. Webelievethatour − modifieddeDondergaugewillalsobeusefulforbetterunderstandingof algebra. Explicitformoftheprojectormaybefound,e.g.,in variousaspectsofAdS/QCDcorrespondencewhicharediscussed,e.g.,in Ref.[27]. Refs.[30].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.