FIAN-TD-2011-12;arXiv:1110.3749[hep-th] Anomalousconformal currents, shadow fields andmassiveAdS fields R.R. Metsaev∗ DepartmentofTheoreticalPhysics,P.N.LebedevPhysicalInstitute,Leninskyprospect53,Moscow119991,Russia IntheframeworkofgaugeinvariantapproachinvolvingStueckelbergandauxiliaryfields,totallysymmetric arbitraryspin anomalous conformal current and shadow fieldinflat space-time of dimension greater than or equal to four arestudied. Gauge invariant differential constraintsfor such anomalous conformal current and shadow fieldandrealization of global conformal symmetries areobtained. Gauge invariant two-point vertex of the arbitrary spin anomalous shadow field is also obtained. In Stueckelberg gauge frame, the two-point gaugeinvariantvertexbecomesthestandardtwo-pointvertexofCFT.Light-conegaugetwo-pointvertexofthe arbitraryspinanomalousshadowfieldisderived. TheAdS/CFTcorrespondenceforarbitraryspinanomalous conformal current andshadow fieldandtherespectivenormalizableandnon-normalizable modesof massive arbitraryspinAdSfieldisstudied. TheAdSfieldisconsideredinmodifieddeDondergaugewhichsimplifies 2 considerablythestudyofAdS/CFTcorrespondence. Weshowthaton-shellleftovergaugesymmetriesofbulk 1 0 massivefieldarerelatedtogaugesymmetriesofboundaryanomalousconformalcurrentandshadowfield,while 2 themodifieddeDondergaugeconditionforbulkmassivefieldisrelatedtodifferentialconstraintsforboundary anomalousconformalcurrentandshadowfield. n a J PACSnumbers:11.25.Tq,11.15.Kc,11.40.Dw 0 3 I. INTRODUCTION AdS/CFT correspondence, spin-s anomalousconformalcur- ] rentandshadowfieldarerelatedtospin-smassiveAdSfield. h t We start with a brief recall of some basic notionsof CFT. Massivetotallysymmetricspin-sAdSfieldswithevens 4 - ≥ p Inspace-timeofdimensiond 4,fieldsofCFTcanbesepa- form leading Regge trajectory of AdS string theory. There- e ≥ fore, extension of our approach to the case of arbitrary s is ratedintotwogroups: conformalcurrentsandshadowfields. h important.Ourapproachtoanomalousconformalcurrentand [ ThisistosaythatfieldhavingLorentzalgebraspins,s 1, ≥ shadowfieldissummarizedasfollows. and conformal dimension ∆ = s + d 2 is referred to as 3 − i)Startingwiththefieldcontentofanomalousconformalcur- v conformalcurrentwithcanonicaldimension,whilefieldhav- 9 ingLorentzalgebraspin s, s 1, andconformaldimension rent (and anomalous shadow field) in the standard CFT, we 4 ≥ introduce Stueckelberg fields and auxiliary fields. In other ∆>s+d 2isreferredtoasanomalousconformalcurrent. 7 − words,weextendspaceoffieldsenteringthestandardCFT. 3 Accordingly,fieldhavingLorentzalgebraspins,s 1,and . conformaldimension∆=2 sisreferredtoasshad≥owfield ii) On the extended space of fields entering our approach, 0 1 withcanonicaldimension1,w−hilefieldhavingLorentzalgebra we introduce differential constraints, gauge transformations, 1 andconformalalgebratransformations. Thedifferentialcon- spins,s 1,andconformaldimension∆<2 sisreferred 1 ≥ − straintsarerequiredtobeinvariantunderthegaugetransfor- toasanomalousshadowfield. : v mationsandtheconformalalgebratransformations. In Refs.[3, 4], we developed the gauge invariant formu- i X iii) Thegaugesymmetriesandthe differentialconstraintsal- lation of the conformal currents and shadow fields having lowustomatchourapproachandthestandardCFT.Namely, r the canonical conformal dimensions. We recall that, in the a by imposing gauge conditions to exclude the Stueckelberg frameworkofAdS/CFTcorrespondence,suchconformalcur- fields and by solving differential constraints to exclude the rentsandshadowfieldsarerelatedtomasslessAdSfields. In auxiliaryfields, we obtainformulationofanomalousconfor- Ref.[5], weextendedourapproachtothecase oflow spin-s, malcurrentandshadowfieldinthestandardCFT. s = 1,2, anomalous conformal currents and shadow fields. The purpose of this paper is to develop gauge invariant ap- Besides the gauge invariant approach, we discuss the proach to bosonic totally symmetric arbitrary spin-s anoma- anomalous conformal current and shadow field by using lousconformalcurrentandshadowfield. Intheframeworkof Stueckelberggaugeandlight-conegaugeconditions.Reasons fordiscussingthesetwogaugeconditionsareasfollows. i) The Stueckelberggaugereducesour approachto the stan- ∗Electronicaddress:[email protected] dardformulationofCFT.ThisistosaythatuseoftheStueck- 1 Shadowfieldshavingthecanonicaldimensionareusedtobuildconformal elberg gauge allows us to demonstrate how the standard ap- invariantequationsofmotionandLagrangianformulationsforconformal proach to anomalous conformal current and shadow field is fieldsinRefs.[1]. Interestingdiscussionofshadowfielddualitiesmaybe foundinRef.[2]. connectedwithourgaugeinvariantapproach. 2 ii)StudyingofCFTinthelight-conegaugeframeismotivated iv) The modified de Donder gauge for massive bulk field is bytheconjectureddualityofthesupersymmetricYang-Mills related to the differentialconstraintfor boundaryanomalous theory and AdS superstring theory [6]. We expect, by anal- conformalcurrent(oranomalousshadowfield). ogywithflatspace,thataquantizationofthetypeIIBGreen- v) On-shell leftover gauge symmetries of massive bulk field Schwarz AdS superstring [7] will be straightforwardonly in are related to the gauge symmetries of boundaryanomalous the light-cone gauge [8–10]. Therefore we think that, from conformalcurrent(oranomalousshadowfield). thestringyperspectiveofAdS/CFTcorrespondence,thelight- Ourpaperisorganizedasfollows. cone approach to CFT deserves to be understood better. In InSec. II,wesummarizeournotationandconventions. thisrespect,wenotethatourapproachprovidesquickaccess SectionIIIisdevotedtogaugeinvariantformulationofarbi- tothelight-conegaugeformulationofCFT.Thisimpliesthat traryspin-sanomalousconformalcurrent. We discussgauge our approach gives easy access to the studying of AdS/CFT symmetriesandrealizationofglobalconformalalgebrassym- correspondenceinlight-conegauge. Thisseemstobeimpor- metriesonspaceofgaugefieldsweuseforthedescriptionof tantforfutureapplicationofourapproachtothestudyingof the anomalous conformalcurrent. We demonstrate how our string/gaugetheoryduality. gaugeinvariantapproachisrelatedtothestandardCFT.Also, We use our gauge invariant formulation of CFT for the usingourapproach,weobtainlight-conegaugedescriptionof studying AdS/CFT correspondence between arbitrary spin thearbitraryspin-sanomalousconformalcurrent. massiveAdSfieldandthecorrespondingarbitraryspinbound- In Sec. IV, we extend results in Sec. III to the case of aryanomalousconformalcurrentandshadowfield. Namely, arbitraryspin-sanomalousshadowfield. Also,wefindgauge we show that non-normalizable modes of arbitrary spin-s invarianttwo-pointvertexforthe arbitraryspin-sanomalous massive AdS field are related to arbitrary spin-s anomalous shadowfield.Wediscussthetwo-pointvertexinStueckelberg shadow field, while normalizable modes of arbitrary spin-s gaugeframeandinlight-conegaugeframe. massive AdS field are related to arbitrary spin-s anomalous In Sec. V, we discuss the two-point current-shadow field conformal current. We recall that, in earlier literature, the interactionvertex. AdS/CFT correspondence between non-normalizable modes InSec. VI,wereviewtheCFTadaptedgaugeinvariantap- of massivespin-1andspin-2AdSfields andthe correspond- proachtomassivearbitraryspinAdSfield.Becausetheuseof ing spin-1 and spin-2 anomalous shadow fields was studied themodifieddeDondergaugemakesourstudyofAdS/CFT in Refs.[11, 12]. The AdS/CFT correspondence for spin-s correspondenceforarbitraryspinfieldssimilartotheonefor massive AdS field with s > 2 and the correspondingspin-s scalar field, we briefly review the AdS/CFT correspondence anomalousconformalcurrentand shadow field has not been forthescalarfield. consideredintheearlierliterature.OurtreatmentofAdS/CFT Section VII is devoted to the study of AdS/CFT corre- correspondenceissummarizedasfollows. spondence between normalizable modes of massive spin-s i) We exploit the CFT adapted gauge invariant approach to AdS field and spin-s anomalous conformal current, while, massive AdS fields and modified de Donder gauge obtained inSec.VIII, westudythe AdS/CFT correspondencebetween inRefs.[13,14]. ThemodifieddeDondergaugeleadstothe non-normalizable modes of massive spin-s AdS field and simple decoupledbulk equationsof motion which are easily spin-sanomalousshadowfield. solved. We show that the two-point gauge invariant vertex SectionIXsummarizesourconclusionsandsuggestsdirec- of the arbitrary spin-s anomalous shadow field does indeed tionsforfutureresearch. emergefrom massivearbitraryspin-sAdS field action when In Appendix, we present some details of matching of the itisevaluatedonsolutionoftheDirichletproblem. Through- bulkandboundaryconformalboostsymmetries. out this paper the AdS field action evaluated on the solution oftheDirichletproblemisreferredtoaseffectiveaction. ii) The numberof boundarygaugefields involvedin ourap- II. PRELIMINARIES proach to the anomalous conformal current (or anomalous shadow field) coincides with the number of gauge fields in- A. Notation volvedintheCFT adaptedformulationofmassiveAdSfield inRef.[14]. We use the following conventions. The Cartesian coor- iii)Thenumberofgaugetransformationparametersinvolved dinates in d-dimensional flat space-time are denoted by xa, in our approach to the anomalous conformal current (or whilederivativeswithrespecttoxa aredenotedby∂ ,∂ a a ≡ anomalousshadowfield)coincideswiththenumberofgauge ∂/∂xa. ThevectorindicesoftheLorentzalgebraso(d 1,1) − transformationparametersinvolvedintheCFTadaptedgauge takethevaluesa,b,c,e=0,1,...,d 1. Weusethemostly − invariantformulationofmassiveAdSfieldinRef.[14]. positiveflatmetrictensorηaband,tosimplifyourexpressions, 3 wedropη inscalarproducts:XaYa η XaYb. Creation α∂ αa∂a, α¯∂ α¯a∂a, (2.5) ab ab ≡ ≡ ≡ operatorsαa, αz, ζ andthe respectiveannihilationoperators α¯a, α¯z, ζ¯are referred to as oscillators.2 Commutation rela- α2 ≡αaαa, α¯2 ≡α¯aα¯a, (2.6) tionsoftheoscillators,thevacuum|0i,andhermitianconju- Nα αaα¯a, Nz αzα¯z, Nζ ζζ¯, (2.7) gationrulesaredefinedas ≡ ≡ ≡ Mab αaα¯b αbα¯a, (2.8) [α¯a,αb]=ηab, [α¯z,αz]=1, [ζ¯,ζ]=1, (2.1) ≡ − 1 Π[1,2] 1 α2 α¯2, (2.9) α¯a 0 =0, α¯z 0 =0, ζ¯0 =0, (2.2) ≡ − 2(2N +d) α | i | i | i αa† =α¯a, αz† =α¯z, ζ† =ζ¯. (2.3) µ 1 1α2α¯2, (2.10) ≡ − 4 The oscillators αa, α¯a and αz, ζ, α¯z, ζ¯transform in the re- 1 spective vector and scalar representations of the Lorentz al- Ca αa α2 α¯a, (2.11) ≡ − 2N +d 2 α gebra so(d 1,1). Throughoutthis paper we use operators − − e 1 constructedoutofthederivatives,coordinates,andtheoscil- C¯a α¯a αaα¯2, (2.12) ⊥ ≡ − 2 lators, ✷ ∂a∂a, x∂ xa∂a, x2 xaxa, (2.4) ≡ ≡ ≡ 2 Weuseoscillatorstohandlethemanyindicesappearingfortensorfields (discussionofoscillatorformulationmaybefoundinRefs.[15,16].) 1/2 (s+ d−4 N )(κ s d−4 +N )(κ+1+N ) r 2 − ζ − − 2 ζ ζ , ζ ≡ 2(s+ d−24 −Nζ −Nz)(κ+Nζ −Nz)(κ+Nζ −Nz +1)! (2.13) 1/2 (s+ d−4 N )(κ+s+ d−4 N )(κ 1 N ) r 2 − z 2 − z − − z , z ≡ 2(s+ d−24 −Nζ −Nz)(κ+Nζ −Nz)(κ+Nζ −Nz −1)! where parameter κ appearing in (2.13) is defined below in (3.4). Throughout the paper the notation λ [n] implies that 2 ∈ λ= n, n+2, n+4,...,n 4,n 2,n: − − − − − λ [n] = λ= n, n+2, n+4,...,n 4,n 2,n. (2.14) 2 ∈ ⇒ − − − − − Often,weusethefollowingsetofscalar,vector,andtotallysymmetrictensorfieldsoftheLorentzalgebraso(d 1,1): − φa1...as′ , s′ =0,1,...,s, λ [s s′] , (2.15) λ ∈ − 2 whereφa1...as′ isrank-s′totallysymmetrictracefultensorfieldoftheLorentzalgebraso(d 1,1).Toillustratethefieldcontent giveninλ(2.15),weuseshortcutφs′ forthefieldφa1...as′ andnotethatfieldsin(2.15)canb−erepresentedas λ λ φs 0 φs−1 φs−1 −1 1 ... ... ... (2.16) φ1 φ1 ... φ1 φ1 1−s 3−s s−3 s−1 φ0 φ0 ... φ0 φ0 −s 2−s s−2 s Our conventionsfor light-cone frame are as follows. The where the coordinates in directions are defined as x± = ± space-timecoordinatesare decomposedasxa = x+,x−,xi, 4 (xd−1 x0)/√2 and x+ is taken to be a light-cone time. is equal to zero, while, in the gauge invariant approach to ± Vector indices of the so(d 2) algebra take values i,j = anomalousconformalcurrentandshadowfieldwedevelopin − 1,...,d 2.Weusethefollowingconventionsforthederiva- this paper, the operator Ra is nontrivial. This is to say that, − tives: in the framework of our gauge invariantapproach, the com- plete description of the conformal current and shadow field ∂i =∂ ∂/∂xi, ∂± =∂ ∂/∂x∓. (2.17) i ≡ ∓ ≡ requires,amongotherthings,findingtheoperatorRa. B. Globalconformalsymmetries III. ARBITRARYSPINANOMALOUSCONFORMAL CURRENT In d-dimensional flat space-time, the conformal algebra so(d,2)consistsoftranslationgeneratorsPa,dilatationgen- A. Gaugeinvariantformulation erator D, conformalboostgeneratorsKa, and generatorsof the so(d 1,1) Lorentz algebra Jab. We use the following Field content. To developgaugeinvariantformulationof − nontrivialcommutatorsoftheconformalalgebra: arbitraryspin-sanomalousconformalcurrentinflatspaceof [D,Pa]= Pa, [Pa,Jbc]=ηabPc ηacPb, dimensiond 4weusethefollowingfields: ≥ − − [D,Ka]=Ka, [Ka,Jbc]=ηabKc ηacKb, φacu1r..,.λas′ , s′ =0,1,...,s, λ∈[s−s′]2. (3.1) − (2.18) Wenotethat: [Pa,Kb]=ηabD Jab, − i) In (3.1), the fields φ and φa are the respective cur,λ cur,λ [Jab,Jce]=ηbcJae+3terms. scalarandvectorfieldsoftheLorentzalgebra,whilethefield φa1...as′, s′ > 1, is rank-s′ totally symmetric tracefultensor cur,λ Letφdenotesanomalousconformalcurrent(oranomalous fieldofthe Lorentzalgebraso(d 1,1). Usingshortcutφs′ shadowfield)inthed-dimensionalflatspace-time. Underthe for the field φa1...as′, fields in (3.−1) can be representedas iλn actionofconformalalgebra,theφtransformsas cur,λ (2.16). δGˆφ=Gˆφ, (2.19) ii) The tensor fields φacu1r..,.λas′ with s′ ≥ 4 satisfy the double- tracelessnessconstraint where the realization of the conformalalgebra generatorsGˆ onspaceofφisgivenby φaabba5...as′ =0, s′ =4,5,...,s. (3.2) cur,λ Pa =∂a, (2.20) iii) The fields φa1...as′ have the followingconformaldimen- Jab =xa∂b xb∂a+Mab, (2.21) cur,λ − sions: D =x∂+∆, (2.22) d ∆(φa1...as′)= +κ+λ. (3.3) cur,λ 2 Ka =Ka +Ra, (2.23) ∆,M iv)IntheframeworkofAdS/CFTcorrespondence,κisrelated 1 tothemassparametermofspin-smassivefieldinAdS as Ka x2∂a+xaD+Mabxb. (2.24) d+1 ∆,M ≡−2 d 4 2 In relations (2.21)-(2.23), ∆ is an operator of conformaldi- κ m2+ s+ − . (3.4) ≡ 2 mension,whileMabisaspinoperatoroftheLorentzalgebra, r (cid:16) (cid:17) In order to obtain the gauge invariant description in an [Mab,Mce]=ηbcMae+3terms. (2.25) easy–to–useformwe use the oscillatorsandintroducea ket- The spin operator of the Lorentz algebra is well known for vector φcur definedby | i arbitraryspinanomalousconformalcurrentandshadowfield s (see (2.8)). In general, operator Ra appearing in (2.23) de- φ = φs′ , (3.5) | curi | curi pends on the derivatives and does not depend on the space- s′=0 X time coordinates.3 In the standard CFT, the operator Ra thispaper,theoperatorRaisindependentofthederivatives. Dependence of the operator Ra onthe derivatives appears in the ordinary-derivative 3 Forthe anomalous conformal currents andshadow fields considered in approachtoconformalfields(seeRefs.[17]-[19]). 5 φs′ ii)Thegaugetransformationparametersξa1...as′ withs′ 2 | curi cur,λ ≥ satisfythetracelessnessconstraint, s−s′+λ s−s′−λ = ζ 2 αz 2 αa1...αas′ φa1...as′ 0 . ξaaa3...as′ =0, s′ =2,3,...,s 1. (3.13) λ∈[Xs−s′]2 s′! (s−s2′+λ)!(s−s2′−λ)! cur,λ | i iii) Thecugra,λuge transformation parameters ξ−a1...as′ have the q cur,λ conformaldimensions From (3.5), we see that the ket-vector φ is degree-sho- cur | i mogeneouspolynomialintheoscillatorsαa,αz,ζ,whilethe ∆(ξa1...as′)= d +κ+λ 1. (3.14) ket-vector φs′ isdegree-s′homogeneouspolynomialinthe cur,λ 2 − | curi oscillatorsαa,i.e.,theseket-vectorssatisfytherelations Now, as usually, we collect the gauge transformation pa- rametersinaket-vector ξ definedby cur | i (N +N +N s)φ =0, (3.6) α z ζ cur − | i s−1 (Nα−s′)|φscu′ri=0. (3.7) |ξcuri=s′=0|ξcsu′ri, (3.15) X In terms of the ket-vector φcur , double-tracelessness con- ξs′ straint(3.2)takestheform4| i | curi s−1−s′+λ s−1−s′−λ (α¯2)2 φ =0. (3.8) = ζ 2 αz 2 αa1...αas′ ξa1...as′ 0 . | curi λ∈[sX−1−s′]2 s′! (s−1−2s′+λ)!(s−1−2s′−λ)! cur,λ | i Differentialconstraint. Wefindthefollowingdifferential q Theket-vectors ξ , ξs′ satisfythealgebraicconstraints constraintfortheanomalousconformalcurrent: | curi | curi (N +N +N s+1)ξ =0, (3.16) α z ζ cur C¯ φ =0, (3.9) − | i cur cur | i (N s′)ξs′ =0, (3.17) 1 1 α− | curi C¯ =α¯∂ α∂α¯2 e¯ Π[1,2]+ e α¯2, (3.10) cur − 2 − 1,cur 2 1,cur whichtellusthat ξ isadegree-(s 1)homogeneouspoly- cur e1,cur =ζrζ✷+αzrz, nomialintheosci|llatoirsαa,αz,ζ,w−hiletheket-vector|ξcsu′ri (3.11) isdegree-s′homogeneouspolynomialintheoscillatorsαa.In e¯1,cur =−rζζ¯−rzα¯z✷, terms of the ket-vector |ξcuri, tracelessness constraint(3.13) takestheform wherethe operatorsΠ[1,2], r , r aredefinedin (2.9), (2.13). ζ z α¯2 ξ =0. (3.18) One can make sure that constraint (3.9) is invariant under | curi gaugetransformationand conformalalgebratransformations Gauge transformation can entirely be written in terms of whichwediscussbelow. φ and ξ . This is to say that gauge transformation cur cur | i | i Gaugesymmetries. Wenowdiscussgaugesymmetriesof takestheform the anomalous conformal current. To this end we introduce δ φ =G ξ , (3.19) thefollowinggaugetransformationparameters: | curi cur| curi 1 ξcau1r.,.λ.as′ , s′ =0,1,...,s−1, λ∈[s−1−s′]2. Gcur ≡α∂−e1,cur−α22Nα+d−2e¯1,cur, (3.20) (3.12) where e , e¯ are given in (3.11). As we have already 1,cur 1,cur Wenotethat said, constraint(3.9) is invariantundergaugetransformation i) In (3.12), the gauge transformation parameters ξ and cur,λ (3.19). ξa aretherespectivescalarandvectorfieldsoftheLorentz cur,λ Realizationof conformalalgebra symmetries. To com- algebra, while the gauge transformation parameter ξa1...as′, cur,λ pletethegaugeinvariantformulationofthespin-sanomalous s′ >1,isrank-s′totallysymmetrictensorfieldoftheLorentz conformalcurrentweproviderealizationoftheconformalal- algebraso(d 1,1). − gebrasymmetriesonspaceoftheket-vector φcur . Allthatis | i neededistofixtheoperatorsMab,∆,andRaandinsertthen theseoperatorsinto(2.20)-(2.23). Realizationofthespinop- 4 Inthispaperweadapttheformulationintermsofthedoubletracelless eratorMab onket-vector φcur (3.5)isgivenin(2.8), while | i gaugefields [20]. Todevelop thegaugeinvariant approach onecanuse realizationoftheoperator∆, unconstrainedgaugefieldsstudiedinRefs.[21].Discussionofothergauge fieldswhichseemtobemostsuitable forthetheoryofinteracting fields d ∆ = +ν, ν κ+N N , (3.21) maybefound,e.g.,in[22]. cur 2 ≡ ζ − z 6 can be read from (3.3). In the gauge invariant formulation, ( )s−s′ 2s−s′Γ(κ s d−4)Γ(κ+s s′) 1/2 X − − − 2 − . finding the operator Ra providesthe real difficulty. We find cur≡(s s′)! Γ(κ s′ d−4)Γ(κ) thefollowingrealizationoftheoperatorRaonspaceof φ : − (cid:16) − − 2 (cid:17) | curi Relation (3.25) tells us that all fields φa1...as′ with s′ 2 cur,λ ≥ Ra = 2ζr (ν+1)α¯a C¯a becometraceless.Fromrelation(3.26),welearnthatthefields cur − ζ − ⊥ φa1...as′ withλ=s s′becomeequaltozero,whilethefields (cid:16) (cid:17) cur,λ 6 − 1 φa1...as′ withλ=s s′ands′ =0,1,...s 1areexpressed − 2 νCa+α22N +d 2C¯⊥a rzα¯z, (3.22) incuter,rλmsoftherank-−stracelesstensorfieldφ−a1...as, (cid:16) α − (cid:17) cur,0 wheretheoperatoresCa,C¯a aregivenin(2.11),(2.12),while φa1...as′ =0, for λ=s s′, (3.27) ⊥ cur,λ 6 − theoperatorsr ,r aredefinedin(2.13). ζ z We derived the diefferential constraint, gauge transforma- φacu1r..,.sa−s′s′ = (s−s′)!Xcur∂b1...∂bs−s′φbc1u.r.,.0bs−s′a1...as′ . tion,andtherealizationoftheoperatorRcaur bygeneralizing p (3.28) ourresultsforthespin-sconformalcurrentwiththecanonical We recall that, in the standard CFT, the spin-s anomalous dimensionwhichwe obtainedin Ref.[3]. Itisworthwhileto conformalcurrentis describedby the tracelessfield φa1...as. notethatresultsinthissectioncanalsobeobtainedbyusing cur,0 Thus we see that making use of the gauge symmetry and thetractorapproachinRefs.[23,24]5.Ourconstraint(3.9)and differentialconstraint we reduce the field content of our ap- gaugetransformation(3.19)canbematchedwiththeonesin proachtotheoneinthestandardCFT.Inotherwords,useof Ref.[23]byusingappropriatefieldredefinitions. Thebasisof the gauge symmetry and differential constraint allows us to thefieldsweuseinthispaperturnsouttobemoreconvenient matchourapproachandthestandardformulationofthespin- forthestudyofAdS/CFTcorrespondence.Tosummarize,our s anomalous conformal current6. To summarize, our gauge fields(3.1)canbewrittenasatractorrank-stensorfieldsub- invariantapproachisequivalenttothestandardone. jecttoaThomas-DdivergencetypeconstraintinRef.[23]. A similarconstructionwasusedtodescribespin-smassivebulk fieldinRef.[23]. Notethat,inourapproach,weuseourfields C. Light-conegaugeframe (3.1) for the discussion of spin-s anomalous conformal cur- rent. Wenowdiscussthespin-sanomalousconformalcurrentin thelight-conegaugeframe. Tothisendwenotethat,forthe anomalous conformalcurrent, the light-cone gauge frame is B. Stueckelberggaugeframe achieved through the use of differential constraint (3.9) and light-cone gauge condition. Using gauge symmetry of the We proceedwith discussion of the spin-s anomalouscon- spin-s anomalous conformal current (3.19), we impose the formalcurrentin the Stueckelberggaugeframe. To this end light-conegaugeonthe φ , wenotethattheStueckelberggaugeframeisachievedthrough | curi the use of differential constraint (3.9) and the Stueckelberg α¯+Π[1,2] φ =0, (3.29) cur | i gaugecondition.From(3.19),weseethatafielddefinedby whereΠ[1,2] isgivenin(2.9). Usinggauge(3.29)anddiffer- α¯zΠ[1,2] φ (3.23) entialconstraint(3.9),wefind cur | i α+ transformsas Stueckelbergfield. Thereforethis field can be φ =exp (α¯i∂i e¯ ) φl.c. , (3.30) | curi −∂+ − 1cur | curi gaugedawayviaStueckelberggaugefixing, (cid:16) (cid:17) α¯iα¯i φl.c. =0, (3.31) α¯zΠ[1,2] φ =0, (3.24) | curi cur | i where a light-cone ket-vector φl.c. is obtained from φ where Π[1,2] is given in (2.9). Using gauge condition (3.24) (3.5)byequatingα+ =α− =|0,curi | curi anddifferentialconstraint(3.9),wefindtherelations φl.c. φ . (3.32) α¯2 φs′ =0, (3.25) | curi≡| curi α+=α−=0 | curi (cid:12) (cid:12) φs′ =X ζs−s′(α¯∂)s−s′ φs , (3.26) (cid:12) | curi cur | curi 6 Wenotethat,asinthestandardCFT,ourcurrentscanbeconsideredeither ascompositeoperatorsorasfundamentalfielddegreesoffreedom.Atthe group theoretical level, we study in this paper, this distinction does not 5 Inmathematicalliterature, interestingdiscussionofthetractorapproach matter. Methodsforbuildingconformalcurrents ascompositeoperators maybefoundinRef.[25]. arediscussedinRefs.[26]. 7 Weseethatweareleftwithlight-conefields From (4.4), we see that the ket-vector φ is degree-s ho- sh | i mogeneouspolynomialintheoscillatorsαa,αz,ζ,whilethe φic1u.r.,.λis′ , s′ =0,1,...,s, λ∈[s−s′]2, (3.33) ket-vector φs′ isdegree-s′ homogeneouspolynomialinthe | shi which are traceless tensor fields of so(d 2) algebra, oscillatorsαa,i.e.,theseket-vectorssatisfytherelations − φiii3...is′ = 0. Thesefieldsconstitutethefieldcontentofthe cur,λ (N +N +N s)φ =0, (4.5) α z ζ sh light-conegaugeframe. Note that, in contrasttothe Stueck- − | i elberg gauge frame, all fields φi1...is′ are not equal to zero. (N s′)φs′ =0. (4.6) cur,λ α− | shi Alsonotethat,incontrasttothegaugeinvariantapproach,the In terms of the ket-vector φ , double-tracelessness con- fields(3.33)arenotsubjecttoanydifferentialconstraint. | shi straint(4.2)takestheform (α¯2)2 φ =0. (4.7) IV. ARBITRARYSPINANOMALOUSSHADOWFIELD | shi Differentialconstraint. Wefindthefollowingdifferential A. Gaugeinvariantformulation constraintfortheanomalousshadowfield: Field content. To discuss gauge invariant formulation of C¯sh φsh =0, (4.8) | i arbitrary spin-s anomalous shadow field in flat space of di- 1 1 C¯ =α¯∂ α∂α¯2 e¯ Π[1,2]+ e α¯2, (4.9) mensiond 4weusethefollowingfields: sh 1,sh 1,sh − 2 − 2 ≥ φash1,.λ..as′ , s′ =0,1,...,s, λ∈[s−s′]2. (4.1) e1,sh =ζrζ +αzrz✷, (4.10) Wenotethat: e¯ = r ζ¯✷ r α¯z, 1,sh ζ z i)In(4.1),thefieldsφ andφa aretherespectivescalar − − sh,λ sh,λ and vector fields of the Lorentz algebra, while the field wheretheoperatorsΠ[1,2], rζ, rz aredefinedin(2.9), (2.13). φa1...as′, s′ > 1, is rank-s′ totally symmetrictracefultensor One can make sure that constraint (4.8) is invariant under sh,λ field oftheLorentzalgebraso(d 1,1). Usingshortcutφs′ gaugetransformationand conformalalgebratransformations for the field φa1...as′, fields in (4.−1) can be representedas iλn whichwediscussbelow. sh,λ Gaugesymmetries. Wenowdiscussgaugesymmetriesof (2.16). ii) The tensorfields φa1...as′ with s′ 4 satisfy the double- the anomalous shadow field. To this end we introduce the sh,λ ≥ followinggaugetransformationparameters: tracelessnessconstraint φsaha,bλba5...as′ =0, s′ =4,5,...,s. (4.2) ξsah1,.λ..as′ , s′ =0,1,...,s−1, λ∈[s−1−(s4′].211.) Wenotethat iii) The fields φa1...as′ have the followingconformaldimen- i) In (4.11), the gauge transformation parameters ξ and sh,λ sh,λ sions: ξa aretherespectivescalarandvectorfieldsoftheLorentz sh,λ ∆(φash1,.λ..as′)= d2 −κ+λ, (4.3) sal′g>eb1ra,,iswrahnilke-sth′etogtaalulygesytmramnseftorricmtaetniosonrpfiaerladmoefttehreξLsah1o,.rλ.e.anst′z, algebraso(d 1,1). iv)IntheframeworkofAdS/CFTcorrespondence,κisrelated − ii)Thegaugetransformationparametersξa1...as′ withs′ 2 tothemassparametermofspin-smassivefieldinAdSd+1as sh,λ ≥ satisfythetracelessnessconstraint in(3.4). In order to obtain the gauge invariant description in an ξaaa3...as′ =0, s′ =2,3,...,s 1. (4.12) sh,λ − easy–to–useformwe use the oscillatorsandintroducea ket- vector φsh definedby iii) The gauge transformation parameters ξsah1,.λ..as′ have the | i conformaldimensions s |φshi=s′=0|φssh′i, (4.4) ∆(ξsah1,.λ..as′)= d2 −κ+λ−1. (4.13) X φs′ Now, as usually, we collect the gauge transformation pa- | shi rametersinaket-vector ξ definedby sh s−s′−λ s−s′+λ | i =λ∈[Xs−s′]2ζs′!2 (sα−zs2′+2λ)!α(sa−1s.2′.−.λα)a!s′ φash1,.λ..as′|0i. |ξshi=ss′−=10|ξssh′i, (4.14) X q 8 ξs′ to say that we find the following gauge invariant two-point | shi vertex: s−1−s′−λ s−1−s′+λ = ζ 2 αz 2 αa1...αas′ ξa1...as′ 0 . Γ= ddx ddx Γ , (4.22) λ∈[sX−1−s′]2 s′! (s−1−2s′+λ)!(s−1−2s′−λ)! sh,λ | i Z 1 2 12 q 1 µf Theket-vectors|ξshi,|ξssh′isatisfythealgebraicconstraints Γ12 = 2hφsh(x1)||x12|2νν+d|φsh(x2)i, (4.23) (N +N +N s+1)ξ =0, (4.15) Γ(ν+ d)Γ(ν +1) α z ζ − | shi fν = 4κ−νΓ(κ+2 d)Γ(κ+1), (4.24) (N s′)ξs′ =0, (4.16) 2 α− | shi ν =κ+N N , (4.25) ζ z − whichtellusthat ξ isadegree-(s 1)homogeneouspoly- sh nomialintheosci|llatoirsαa,αz,ζ,w−hiletheket-vector|ξssh′i |x12|2 ≡xa12xa12, xa12 =xa1 −xa2, (4.26) is degree-s′ homogeneous polynomial in the oscillators αa. where µ is given in (2.10). Vertex Γ (4.22) is invariant un- Intermsoftheket-vector|ξshi,tracelessnessconstraint(4.12) dergaugetransformationoftheanomalousshadowfield|φshi takestheform (4.18) provided this anomalous shadow field satisfies differ- entialconstraint(4.8).Thevertexisobviouslyinvariantunder α¯2 ξ =0. (4.17) sh thePoincare´algebraanddilatationsymmetries.Wemakesure | i thatvertex(4.22)isinvariantundertheconformalboosttrans- Gauge transformation can entirely be written in terms of formations. φ and ξ . Thisistosaythatgaugetransformationtakes | shi | shi To illustrate structure of the vertex Γ12 we note that, in theform terms of the tensor fields φa1...as′, vertex Γ (4.23) can be sh,λ 12 representedas δ φ =G ξ , (4.18) sh sh sh | i | i s 1 Γ = Γs′ , (4.27) G =α∂ e α2 e¯ , (4.19) 12 12,λ sh − 1,sh− 2Nα+d−2 1,sh sX′=0λ∈[Xs−s′]2 where e1,sh, e¯1,sh are givenin (4.10). Constraint(4.8) is in- Γs′ = wλ φa1...as′(x )φa1...as′(x ) variantundergaugetransformation(4.18). 12,λ 2s′!x 2κ−2λ+d sh,λ 1 sh,λ 2 12 Realizationof conformalalgebra symmetries. To com- | | (cid:16) pletethegaugeinvariantformulationofthespin-sanomalous s′(s′ 1) − φaaa3...as′(x )φbba3...as′(x ) , (4.28) shadowfieldweproviderealizationoftheconformalalgebra − 4 sh,λ 1 sh,λ 2 (cid:17) symmetries on space of the ket-vector φ . All that is re- sh | i quiredistofixtheoperatorsMab,∆,andRa andinsertthen Γ(κ λ+ d)Γ(κ λ+1) theseoperatorsinto(2.20)-(2.23). Realizationofthespinop- wλ ≡ 4λ−Γ(κ+2d)Γ(κ−+1) . (4.29) erator Mab on ket-vector φ (4.4) is given in (2.8), while 2 sh | i We note that the kernel of the vertex Γ is connected with realizationoftheoperator∆, a two-pointcorrelationfunctionof theanomalousconformal d current. In the framework of our approach, the anomalous ∆ = ν, ν =κ+N N , (4.20) sh 2 − ζ − z conformal current is described by gauge fields (3.1) subject to differential constraints. In order to discuss the correla- can be read from (4.3). Realization of the operator Ra on tion function of the spin-s anomalous conformal current in spaceof φ ,whichwefind,isgivenby sh | i aproperway,wecanimposeagaugeconditiononthegauge fieldsgivenin(3.1). Recallthatwehaveconsideredthespin- Ra = 2αzr (ν 1)α¯a+C¯a sh z − ⊥ sanomalousconformalcurrentbyusingtheStueckelbergand (cid:16) (cid:17) 1 light-conegaugeframes.Obviously,thetwo-pointcorrelation + 2 νCa α2 C¯a r ζ¯, (4.21) − 2N +d 2 ⊥ ζ functionoftheanomalousconformalcurrentintheStueckel- α (cid:16) − (cid:17) berg and light-cone gauge frames is obtained from the two- e wheretheoperatorsCa,C¯a aregivenin(2.11),(2.12),while pointvertexΓtakenintherespectiveStueckelbergandlight- ⊥ theoperatorsr ,r aredefinedin(2.13). conegaugeframes. Tothisendweproceedbydiscussingthe ζ z Two-pointgaugeeinvariantvertex. We nowdiscusstwo- anomalous shadow field in the Stueckelberg and light-cone point vertex for the spin-s anomalous shadow field. This is gaugeframes. 9 B. Stueckelberggaugeframe Γstand =s! φs (x )O φs (x ) , (4.37) 12 h sh 1 | 12| sh 2 i We now discuss the spin-s anomalousshadow field in the s ( )n2n(αx )n(α¯x )n Stueckelberg gauge frame. We note that the Stueckelberg O12 ≡ −n! x122κ+d+122n , (4.38) 12 gauge frame can be achieved through the use of differential nX=0 | | constraint given in (4.8) and the Stueckelberg gauge condi- 2κ+2s+d 2 tion. From(4.18),weseethatafielddefinedby k − , (4.39) s ≡ 2s!(2κ+d 2) − ζ¯Π[1,2] φ (4.30) sh | i where αx = αaxa , α¯x = α¯axa and Γstand in (4.36), 12 12 12 12 12 transformsas Stueckelbergfield. Thereforethis field can be (4.37)standsforthetwo-pointvertexofthespin-sanomalous gaugedawayviaStueckelberggaugefixing, shadow field in the standard CFT. Relation (4.37) provides oscillatorrepresentationfortheΓstand. Intermsofthetensor ζ¯Π[1,2] φ =0. (4.31) 12 | shi field φa1...as, vertex Γstand (4.37) can be represented in the sh,0 12 Using this gauge condition and differential constraint (4.8), commonlyusedform, wefindthefollowingrelations: Oa1b1...Oasbs α¯2 φs′ =0, (4.32) Γs1t2and =φsah1,.0..as(x1) 12x 2κ+d12 φbsh1.,.0.bs(x2), (4.40) | shi | 12| φs′ =X αs−s′(α¯∂)s−s′ φs , (4.33) 2xa xb | shi sh z | shi Oab ηab 12 12 . (4.41) 12 ≡ − x 2 ( )s−s′ 2s−s′Γ(κ+d−2+s′)Γ(κ+1) 1/2 | 12| X − 2 . sh≡(s s′)! Γ(κ+s+d−2)Γ(κ s+1+s′) From(4.36),weseethatourgaugeinvariantvertexΓ12 con- − (cid:16) 2 − (cid:17) sideredintheStueckelberggaugeframecoincides,uptonor- Relation (4.32) tells us that all fields φash1,.λ..as′ with s′ ≥ 2 malization factor ks, with the two-point vertex in the stan- becometraceless.Fromrelation(4.33),welearnthatthefields dardCFT.InsectionIIIB,wehavedemonstratedthat,inthe φash1,.λ..as′ withλ6=s−s′becomeequaltozero,whilethefields Stueckelberg gauge frame, we are left with rank-s traceless φash1,.λ..as′ withλ=s−s′ands′ =0,1,...,s−1areexpressed tensor field φcau1r..,.0as. Two-point correlation function of this intermsoftherank-stracelesstensorfieldφsah1,.0..as, tensorfieldisdefinedbythekernelofvertexΓstand (4.40). φa1...as′ =0, for λ=s s′, (4.34) sh,λ 6 − C. Light-conegaugeframe φash1,.s..−ass′′ = (s−s′)!Xsh∂b1...∂bs−s′φbsh1.,.0.bs−s′a1...as′ . p (4.35) Weproceedwithdiscussionoftheanomalousshadowfield in the light-cone gauge frame. For the anomalous shadow We recall that, in the standard CFT, the spin-s anomalous field,thelight-conegaugeframecanbeachievedthroughthe shadow field is describedby the traceless rank-stensor field φa1...as. Thusweseethatmakinguseofthegaugesymmetry useofdifferentialconstraint(4.8)andlight-conegaugecondi- sh,0 tion. Usinggaugesymmetryofthespin-sanomalousshadow and differentialconstraintwe reduce the field contentof our field(4.18),weimposethelight-conegaugeonthe φ , approachtotheoneinthestandardCFT.Inotherwords,use | shi of the gauge symmetry and differential constraint allows us α¯+Π[1,2] φ =0, (4.42) sh to match our approach and the standard formulation of the | i anomalousshadowfield. To summarize, ourgaugeinvariant where Π[1,2] is given in (2.9). Using gauge condition (4.42) approachisequivalenttothestandardone. anddifferentialconstraint(4.8),weobtain WenowdiscussStueckelberggauge-fixedtwo-pointvertex oftheanomalousshadowfield. Inotherwords,wearegoing α+ φ =exp (α¯i∂i e¯ ) φl.c. , (4.43) toconnectourvertex(4.22)withtheoneinthestandardCFT. | shi −∂+ − 1sh | sh i (cid:16) (cid:17) TodothatwenotethatvertexofthestandardCFTisobtained α¯iα¯i φl.c. =0, (4.44) fromourgaugeinvariantvertex(4.22)bypluggingsolutionto | sh i thedifferentialconstraint(4.33)into(4.22).Doingso,wefind where a light-cone ket-vector φl.c. is obtained from φ thefollowingtwo-pointdensity(uptototalderivative)inthe | sh i | shi (4.4)byequatingα+ =α− =0, Stueckelberggaugeframe: ΓS12tuck.g.fram =ksΓs1t2and, (4.36) |φls.hc.i≡|φshi α+=α−=0. (4.45) (cid:12) (cid:12) (cid:12) 10 Weseethatweareleftwithlight-conefields V. TWO-POINTCURRENT-SHADOWFIELD INTERACTIONVERTEX φi1...is′ , s′ =0,1,...,s, λ [s s′] , (4.46) sh,λ ∈ − 2 Wenowbrieflydiscussthetwo-pointcurrent-shadowfield which are traceless tensor fields of so(d 2) algebra, φiii3...is′ = 0. Thesefieldsconstitutethefield−contentofthe interactionvertex. In ourapproach,thisinteractionvertexis sh,λ determinedbyrequiringthat: light-conegaugeframe. Note that, in contrasttothe Stueck- elberg gauge frame, all fields φi1...is′ are not equal to zero. i)thevertexisinvariantunderbothgaugetransformationsof sh,λ anomalousconformalcurrentandshadowfield; Also note that, in contrast to the gauge invariant approach, ii) vertex is invariant under conformal algebra transforma- fields(4.46)arenotsubjecttoanydifferentialconstraint. Us- tions. ing(4.43)in(4.23)leadstolight-conegauge-fixedvertex Wefindthefollowingvertex: 1 f Γl.c. = φl.c.(x ) ν φl.c.(x ) , (4.47) 12 2h sh 1 ||x12|2ν+d| sh 2 i L=hφcur|µ|φshi, (5.1) wheref isdefinedin(4.24). whereµisgivenin(2.10).Wenotethat,undergaugetransfor- ν ToillustratethestructureofvertexΓl.c.(4.47)wenotethat, mationoftheanomalousconformalcurrent(3.19),thevaria- 12 intermsofthefieldsφi1...is′,thevertexcanberepresentedas tionofvertex(5.1)takestheform(uptototalderivative) sh,λ Γl.c. = s Γs′l.c., (4.48) δξcurL=−hξcur|C¯sh|φshi. (5.2) 12 12,λ sX′=0λ∈[Xs−s′]2 From(5.2),weseethatthevertex isinvariantundergauge L transformationof the anomalousconformalcurrentprovided Γs′l.c.= wλ φi1...is′(x)φi1...is′(x), (4.49) the anomalous shadow field satisfies differential constraint 12,λ 2s′!x 2κ−2λ+d sh,λ 1 sh,λ 2 | 12| (4.8). Next, we note that under gauge transformation of the where w is given in (4.29). We see that, as in the case of anomalousshadow field (4.18) the gauge variation of vertex λ gauge invariant vertex, light-cone vertex (4.48) is diagonal (5.1)takestheform(uptototalderivative) with respect to the light-cone fields φi1...is′. Note however that, in contrast to the gauge invariantsvh,eλrtex, the light-cone δξshL=−hξsh|C¯cur|φcuri. (5.3) vertexisconstructedoutofthelight-conefieldswhicharenot From(5.3),weseethatthevertex isinvariantundergauge subjecttoanydifferentialconstraints. L transformation of the anomalous shadow field provided the Thus, we see that our gauge invariant vertex does indeed anomalous conformal current satisfies differential constraint provideeasyandquickaccesstothelight-conegaugevertex. (3.9). Namely, all that is needed to obtain light-cone gauge vertex Usingtherealizationoftheconformalalgebrasymmetries (4.48)istoremovetracesofthetensorfieldsφa1...as′ andre- sh,λ obtainedinSectionsIII,IV,wemakesurethatvertex (5.1) placetheso(d 1,1)Lorentzalgebravectorindicesappear- L − isinvariantundertheconformalalgebratransformations. ing in gauge invariant vertex (4.23) by the respective vector indicesoftheso(d 2)algebra. − Thekernelofthelight-conevertexgivesthetwo-pointcor- VI. ADS/CFTCORRESPONDENCE.PRELIMINARIES relation function of the spin-s anomalous conformal current takentobeinthelight-conegauge.Definingtwo-pointcorre- We now study the AdS/CFT correspondence for free ar- lationfunctionsofthefieldsφi1...is′ asthesecondfunctional bitrary spin massive AdS field and boundary arbitrary spin cur,λ derivativeofΓ with respectto theshadowfieldsφi1...is′, we anomalousconformalcurrentandshadowfield. Tostudythe sh,−λ obtainthefollowingcorrelationfunctions: AdS/CFT correspondence we use the gauge invariant CFT adapted formulation of massive AdS field and modified de hφic1u.r.,.λis′(x1),φcj1u.r.,.λjs′(x2)i Donder gauge condition found in Ref.[14].7 We emphasize w = −λ Πi1...is′;j1...js′ , (4.50) x 2κ+2λ+d 12 | | 7 ApplicationsofthestandarddeDondergaugetothevariousproblemsof where wλ is defined in (4.29) and Πi1...is′;j1...js′ stands for masslessfieldsmaybefoundinRefs.[28].Recentinterestingdiscussionof theprojectorontracelessrank-s′tensorfieldoftheso(d 2) modifieddeDondergaugemaybefoundinRef.[29]. Webelievethatour − modifieddeDondergaugewillalsobeusefulforbetterunderstandingof algebra. Explicitformoftheprojectormaybefound,e.g.,in variousaspectsofAdS/QCDcorrespondencewhicharediscussed,e.g.,in Ref.[27]. Refs.[30].