ebook img

Animal Movement: Statistical Models for Telemetry Data PDF

301 Pages·2017·20.864 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Animal Movement: Statistical Models for Telemetry Data

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2017 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business Printed on acid-free paper Version Date: 20160908 International Standard Book Number-13: 978-1-4665-8214-9 (Hardback) Library of Congress Cataloging-in-Publication Data Names: Hooten, Mevin B., 1976- Title: Animal movement : statistical models for telemetry data / Mevin B. Hooten [and three others]. Description: Boca Raton : CRC Press, 2017. | Includes bibliographical references and indexes. Identifiers: LCCN 2016034976 | ISBN 9781466582149 (hardback : alk. paper) Subjects: LCSH: Animal behavior--Mathematical models. | Home range (Animal geography)--Mathematical models. | Biotelemetry. Classification: LCC QL751.65.M3 A55 2017 | DDC 591.501/5118--dc23 LC record available at https://lccn.loc.gov/2016034976 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface..............................................................ix Chapter1 Introduction..............................................................1 1.1 BackgroundonAnimalMovement .............................1 1.1.1 PopulationDynamics...................................3 1.1.2 SpatialRedistribution...................................4 1.1.3 HomeRanges,Territories,andGroups................6 1.1.4 GroupMovementandDynamics.......................7 1.1.5 InformedDispersalandProspecting...................8 1.1.6 Memory .................................................8 1.1.7 IndividualCondition....................................9 1.1.8 EnergyBalance ........................................10 1.1.9 FoodProvision.........................................10 1.1.10 EncounterRatesandPatterns .........................10 1.2 TelemetryData..................................................12 1.3 Notation .........................................................14 1.4 StatisticalConcepts.............................................15 1.5 AdditionalReading .............................................17 Chapter2 StatisticsforSpatialData ..............................................19 2.1 PointProcesses..................................................19 2.1.1 HomogeneousSPPs....................................21 2.1.2 DensityEstimation.....................................23 2.1.3 ParametricModels.....................................25 2.2 ContinuousSpatialProcesses ..................................28 2.2.1 ModelingandParameterEstimation..................29 2.2.2 Prediction...............................................34 2.2.3 RestrictedMaximumLikelihood......................35 2.2.4 BayesianGeostatistics.................................36 2.3 DiscreteSpatialProcesses......................................39 2.3.1 DescriptiveStatistics...................................40 2.3.2 ModelsforDiscreteSpatialProcesses................43 2.4 SpatialConfounding............................................47 2.5 DimensionReductionMethods ................................48 2.5.1 ReducingNecessaryCalculations.....................48 2.5.2 Reduced-RankModels ................................49 2.5.3 PredictiveProcesses ...................................51 2.6 AdditionalReading .............................................54 Chapter3 StatisticsforTemporalData ...........................................55 3.1 UnivariateTimeSeries..........................................55 3.1.1 DescriptiveStatistics...................................57 3.1.2 ModelsforUnivariateTemporalData................60 3.1.2.1 AutoregressiveModels......................60 3.1.2.2 MovingAverageModels....................65 3.1.2.3 BackshiftNotation..........................66 3.1.2.4 DifferencinginTimeSeriesModels .......68 3.1.2.5 FittingTimeSeriesModels.................68 3.1.3 Forecasting.............................................71 3.1.4 AdditionalUnivariateTimeSeriesNotes.............73 3.1.5 TemporallyVaryingCoefficientModels .............74 3.1.6 TemporalPointProcesses.............................77 3.2 MultivariateTimeSeries........................................83 3.2.1 VectorAutoregressiveModels........................83 3.2.2 Implementation ........................................87 3.3 HierarchicalTimeSeriesModels ..............................88 3.3.1 MeasurementError ....................................89 3.3.2 HiddenMarkovModels ...............................91 3.3.3 Upscaling...............................................92 3.3.3.1 Implementation:Kalman Approaches..................................94 3.3.3.2 Implementation:Bayesian Approaches..................................96 3.4 AdditionalReading .............................................98 Chapter4 PointProcessModels ..................................................99 4.1 SpaceUse .......................................................99 4.1.1 HomeRange ..........................................101 4.1.2 CoreAreas ............................................103 4.2 ResourceSelectionFunctions.................................107 4.2.1 ImplementationofRSFModels......................110 4.2.2 EfficientComputationofRSFIntegrals .............113 4.3 ResourceUtilizationFunctions................................117 4.4 Autocorrelation ................................................121 4.5 Population-LevelInference....................................123 4.6 MeasurementError ............................................127 4.7 Spatio-TemporalPointProcessModels.......................131 4.7.1 GeneralSpatio-TemporalPointProcesses...........132 4.7.2 ConditionalSTPPModelsforTelemetry Data....................................................134 4.7.3 FullSTPPModelforTelemetryData................138 4.7.4 STPPsasSpatialPointProcesses....................141 4.8 AdditionalReading ............................................145 Chapter5 Discrete-TimeModels................................................ 147 5.1 PositionModels................................................147 5.1.1 RandomWalk.........................................147 5.1.2 Attraction..............................................150 5.1.3 MeasurementError ...................................150 5.1.4 TemporalAlignment(IrregularData)................153 5.1.5 HeterogeneousBehavior..............................153 5.2 VelocityModels................................................158 5.2.1 ModelingMovementParameters.....................162 5.2.2 GeneralizedState-SwitchingModels................168 5.2.3 ResponsetoSpatialFeatures.........................175 5.2.4 DirectDynamicsinMovementParameters..........176 5.2.5 PatchTransitions......................................178 5.2.6 AuxiliaryData ........................................182 5.2.7 Population-LevelInference...........................186 5.3 AdditionalReading ............................................187 Chapter6 Continuous-TimeModels............................................ 189 6.1 LagrangianversusEulerianPerspectives .....................189 6.2 StochasticDifferentialEquations .............................192 6.3 BrownianBridges..............................................195 6.4 AttractionandDrift............................................197 6.5 Ornstein–UhlenbeckModels..................................199 6.6 PotentialFunctions.............................................202 6.7 SmoothBrownianMovementModels ........................211 6.7.1 Velocity-BasedStochasticProcessModels .........212 6.7.2 FunctionalMovementModelsandCovariance......217 6.7.3 ImplementingFunctionalMovementModels .......219 6.7.4 PhenomenologicalFunctionalMovement Models.................................................220 6.7.5 Velocity-BasedOrnstein–UhlenbeckModels.......223 6.7.6 ResourceSelectionandOrnstein–Uhlenbeck Models.................................................229 6.7.7 PredictionUsingOrnstein–Uhlenbeck Models.................................................231 6.8 ConnectionsamongDiscreteand ContinuousModels ............................................235 6.9 AdditionalReading ............................................238 Chapter7 SecondaryModelsandInference.................................... 239 7.1 MultipleImputation............................................239 7.2 TransitionsinDiscreteSpace..................................241 7.3 TransitionsinContinuousSpace..............................246 7.4 GeneralizedModelsforTransitionsinDiscreteSpace.......253 7.5 ConnectionswithPointProcessModels......................256 7.5.1 Continuous-TimeModels ............................256 7.5.2 Discrete-TimeModels................................263 7.6 AdditionalReading ............................................267 Glossary............................................................................. 269 References........................................................................... 273 AuthorIndex........................................................................ 291 SubjectIndex....................................................................... 299 Preface With the field of animal movement modeling evolving so rapidly, navigating the expanding literature is challenging. It may be impossible to provide an exhaustive summary of animal movement concepts, biological underpinnings, and behavioral theory; thus, we view this book as a starting place to learn about the fundamen- tal suite of statistical modeling tools available for providing inference concerning individual-basedanimalmovement. Noticethatthetitleisfocusedon“statisticalmodelsfortelemetrydata.”Thesetof existingliteraturerelatedtoanimalmovementismassive,withthousandsofindivid- ualpapersrelatedtothegeneraltopic.Allofthisinformationcannotbesynthesized inasinglevolume;thus,wefocusonthesubsetofliteraturemainlyconcernedwith parametricstatisticalmodeling(i.e.,statisticalapproachesforinversemodelingbased on data and known probability distributions, mainly using likelihood and Bayesian methods). There are many other approaches for simulating animal movement and visualizingtelemetrydata;weleavemostofthoseforanothervolume. Ourintentionisthatthisbookreadsmorelikeareferencethanacookbook.Itpro- videsinsightaboutthestatisticalaspectsofanimalmovementmodeling.Weexpect twotypesofreaders:(1)aportionofreaderswillusethisbookasacompanionref- erenceforobtainingthebackgroundnecessarytoreadscientificpapersaboutanimal movement,and(2)theotherportionofreaderswillusethebookasafoundationfor creatingandimplementingtheirownstatisticalanimalmovementmodels. Wedesignedthisbooksuchthatitopenswithanoverviewofanimalmovement dataandasummaryoftheprogressionofthefieldovertheyears.Thenweprovide aseriesofchaptersasareviewofimportantstatisticalconceptsthatarerelevantfor themoreadvancedanimalmovementmodelsthatfollow.Chapter4coverspointpro- cessmodelsforlearningaboutanimalmovement;manyoftheserelyonuncorrelated telemetrydata,butSection4.7addressesspatio-temporalpointprocesses.Chapters5 through6areconcernedwithdynamicanimalmovementmodelsofboththediscrete- and continuous-time flavors. Finally, Chapter 7 describes approaches to use mod- elsinsequence,properlyaccommodatingtheuncertaintyfromfirst-stagemodelsin second-stageinference. Wedevoteagreatdealofspacetospatialandtemporalstatisticsingeneralbecause thisisanareathatmanyanimalecologistshavereceivednoformaltrainingin.These subjectsarecriticalforanimalmovementmodelingandwerecommendatleastalight readingofChapters2and3foreveryone.However,werecognizethatreadersalready familiarwiththebasicsoftelemetrydata,aswellasspatialandtemporalstatistics, maybetemptedtoskipaheadtoChapter4,onlyreferringbacktoChapters2and3 forreference. Finally, despite the rapid evolution of animal movement modeling approaches, no single method has risen to the top as a gold standard. This lack of a universally acceptedframeworkforanalyzingalltypesoftelemetrydataissomewhatuniquein thefieldofquantitativeanimalecologyandcanbedauntingfornewresearchersjust wantingtodotherightthing.Ontheotherhand,itisanexcitingtimeinanimalecol- ogybecausewecanaskandanswernewquestionsthatarefundamentaltothebiology, ecology, and conservation of wildlife. Each new statistical approach for analyzing telemetrydatabringspotentialfornewinferenceintothescientificunderstandingof criticalprocessesinherenttolivingsystems. 1 Introduction The movement of organisms is a fundamentally important ecological process. Vol- untary movement is a critical aspect of animal biology and ecology. Humans have been keenly interested in the movement of individual animals and populations for millennia.Over2000yearsago,Aristotlewroteaboutthemotionofanimals,andthe associatedphilosophicalandmathematicalconcepts,inhisbook,DeMotuAnimal- ium(Nussbaum1978).Historically,itwascriticaltounderstandhowandwherewild foodsourcescouldbeobtained.Thus,earlyhumanswerenaturalanimalmovement modelers.Inmoderntimes,weareinterestedinthemovementofanimalsforscien- tific reasons and for making decisions regarding the management and conservation ofnaturalresources(Cagnaccietal.2010). Thestudyofwildanimalscanbechallenging.Animalsareoftenelusiveandreside inremoteorchallengingterrain.Manyanimalshavelearnedtominimizeexposureto perceivedthreats,which,unfortunatelyforus,includethewell-intentionedbiologist approaching them with binoculars or a capture net. Therefore, it is no surprise that thedevelopmentofanimal-bornetelemetrydeviceshasrevolutionizedourabilityto studyanimalsinthewild(Cagnaccietal.2010;Kaysetal.2015).Animaltelemetry hashelpedusovercomemanyofthepractical,logistical,andfinancialchallengesof directfieldobservation.Telemetrydatahaveopenedwindowsthatallowustoaddress some of the most fundamental ecological hypotheses about space use (“Where is theanimal?”),movement(“Howdidtheanimalgetthere?,”“Wherecoulditgo?”), resourceselection(“Wheredoestheanimalliketobe?”),andbehavior(“Whatisthe animaldoing?”)(Figure1.1). 1.1 BACKGROUND ON ANIMAL MOVEMENT Animalmovementplaysimportantrolesinthefitnessandevolutionofspecies(e.g., Nathan et al. 2008), the structuring of populations and communities (e.g., Turchin 1998),ecosystemfunction(LundbergandMoberg2003),andresponsestoenviron- mental change (e.g., Thomas et al. 2004; Trakhtenbrot et al. 2005; Jønsson et al. 2016). The scientific study of animal movement has a deep history, and we are unabletoexplorealloftheecologicalimplicationsandmethodologicaldevelopments in a single volume. Instead, we focus on several specific inferential methods that canprovidevaluableecologicalinsightsaboutanimalmovementandbehaviorfrom telemetrydata. The importance of animal movement in larger-scale ecosystem function proba- blyinspiredtheCraighead brothersto developand deploythefirst radiocollars on grizzly bears (Ursus arctos) from Yellowstone National Park in the 1960s (Craig- headandCraighead1972).Satellitetrackingdevicesarenowcapableofpinpointing animallocationsatanymoment,remotesensingprovideseverrefinedenvironmental 2 AnimalMovement Data Question Chapter Where was it? Spatial point Environmental processes data (Chapters 4, 7) How did it get there? Discrete-time Location data Where could it models go? (Chapters 5, 7) Where did it prefer to go? Continuous- Auxiliary data time models (Chapters 6, 7) What was it doing? FIGURE 1.1 Relationships among data types, analytical methods, and some fundamental questionsofmovementecology.Locationdataarethecornerstoneofalloftheanalysismeth- odsdescribedinthisbook.Environmentaldata,suchasthoseacquiredfromremotesensing,are usefulindrawingconnectionsbetweenanimalsandtheirsurroundings.Auxiliarybioteleme- trydata,suchasaccelerometerordiveprofiledata,canhelpaddressquestionsaboutanimal behavior.Dashedlinesindicatewheredatacanbehelpfulforaddressingparticularquestions, butarenotessential. data,andbiotelemetrytagsallowforthesimultaneouscollectionofimportantphysio- logicalandbehavioralinformationfromwildanimals.Thesetechnologicaladvances will lead to a better understanding of how individual decisions affect demographic parametersandultimatelytranslateintopopulationdynamics.Inthissense, animal movementcanprovidethelong-soughtbridgebetweenbehavior,landscapeecology, andpopulationdynamics(LimaandZollner1996;Wiens1997;Moralesetal.2010; Kaysetal.2015). Inwhatfollows,weprovideabriefsummaryofresearchfindings,existingknowl- edge, and analytic approaches for important aspects of animal movement ecology. Weorganizedthesetopicsinto10sections: 1. Populationdynamics 2. Spatialredistribution 3. Homeranges,territories,andgroups 4. Groupmovementanddynamics 5. Informeddispersalandprospecting

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.