ebook img

Angular Momentum Techniques In Quantum Mechanics PDF

255 Pages·2002·9.7 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Angular Momentum Techniques In Quantum Mechanics

Angular Momentum Techniques in Quantum Mechanics Fundamental Theories of Physics An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application Editor: ALWYN VAN DER MERWE, University of Denver, U.S.A. Editorial Advisory Board: LAWRENCE P. HORWITZ, Tel-Aviv University, Israel BRIAN D. JOSEPHSON, University of Cambridge, U. K. CLIVE KILMISTER, University of London, U. K. PEKKA J. LAHTI, University of Turku, Finland GÜNTER LUDWIG, Philipps-Universität, Marburg, Germany NATHAN ROSEN, Israel Institute of Technology, Israel ASHER PERES, Israel Institute of Technology, Israel EDUARD PRUGOVECKI, University of Toronto, Canada MENDEL SACHS, State University of New York at Buffalo, U.S.A. ABDUS SALAM, International Centre for Theoretical Physics, Trieste, Italy HANS-JÜRGEN TREDER, Zentralinstitut für Astrophysik der Akademie der Wissenschaften, Germany Volume 108 Angular Momentum Techniques in Quantum Mechanics by V. Devanathan Department of Nuclear Physics, University of Madras and Crystal Growth Centre Anna University, Chennai, India KLUWER ACADEMIC PUBLISHERS NEW YORK / BOSTON / DORDRECHT / LONDON / MOSCOW(cid:8) eBookISBN: 0-306-47123-X Print ISBN: 0-792-35866-X ©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://www.kluweronline.com and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com To my teacher Professor Alladi Ramakrishnan who has inspired me to take to research and teaching This page intentionally left blank. CONTENTS Preface xiii 1 ANGULAR MOMENTUM OPERATORS AND THEIR MATRIX ELEMENTS 1 1.1 Quantum Mechanical Definition . . . . . . . . . . . . . . . . . 1 1.2 Physical Interpretation of Angular Momentum Vector ... 2 1.3 Raising and Lowering Operators . . . . . . . . . . . . . . . 3 1.4 Spectrum of Eigenvalues . . . . . . . . . . . . . . . . . . . . . 4 1.5 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Angular Momentum Matrices . . . . . . . . . . . . . . . . . . 6 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Solutions to Selected Problems . . . . . . . . . . . . . . . . 9 2 COUPLING OF TWO ANGULAR MOMENTA 10 2.1 The Clebsch-Gordan Coefficients . . . . . . . . . . . . . . . . 10 2.2 Some Simple Properties of C.G. Coefficients . . . . . . . . . 11 2.3 General Expressions for C.G. Coefficients . . . . . . . . . . 13 2.4 Symmetry Properties of C.G. Coefficients . . . . . . . . . . 14 2.5 Iso-Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 16 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Solutions to Selected Problems . . . . . . . . . . . . . . . . . 19 3 VECTORS AND TENSORS IN SPHERICAL BASIS 24 3.1 The Spherical Basis . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Scalar and Vector Products in Spherical Basis . . . . . . . . 26 3.3 The Spherical Tensors . . . . . . . . . . . . . . . . . . . . . . 27 3.4 The Tensor Product . . . . . . . . . . . . . . . . . . . . . . . 29 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 30 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Solutions to Selected Problems . . . . . . . . . . . . . . . . . 31 vii viii 4 ROTATION MATRICES - I 34 4.1 Definition of Rotation Matrix . . . . . . . . . . . . . . . . . . 34 4.2 Rotation in terms of Euler Angles . . . . . . . . . . . . . . 34 4.3 Transformation of a Spherical Vector under Rotation of Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4 The Rotation Matrix D1 (α,β,γ) . . . . . . . . . . . . . . . . 38 4.5 Construction of other Rotation Matrices . . . . . . . . . . . . 38 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 39 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Solutions to Selected Problems . . . . . . . . . . . . . . . . 39 5 ROTATION MATRICES - II 42 5.1 The Rotation Operator . . . . . . . . . . . . . . . . . . . . . 42 5.2 The (β) ) Matrix . . . . . . . . . . . . . . . . . . . . . . . 44 5.3 The Rotation Matrix for Spinors . . . . . . . . . . . . 45 5.4 The Clebsch-Gordan Series . . . . . . . . . . . . . . . . . . 48 5.5 The Inverse Clebsch-Gordan Series . . . . . . . . . . . . . . 49 5.6 Unitarity and Symmetry Properties of the Rotation Matrices 50 5.7 The Spherical Harmonic Addition Theorem . . . . . . . . . 52 5.8 The Coupling Rule for the Spherical Harmonics . . . . . . . 54 5.9 Orthogonality and Normalization of the Rotation Matrices . 56 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . 58 6 TENSOR OPERATORS AND REDUCED MATRIX ELEMENTS 61 6.1 Irreducible Tensor Operators . . . . . . . . . . . . . . . . . . 61 6.2 Racah’s Definition . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3 The Wigner-Eckart Theorem . . . . . . . . . . . . . . . . . . . 63 6.4 Proofs of the Wigner-Eckart Theorem . . . . . . . . . . . . . 65 6.4.1 Method I . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.4.2 Method II . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4.3 Method III . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.5 Tensors and Tensor Operators . . . . . . . . . . . . . . . . . . . 72 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . 75 7 COUPLING OF THREE ANGULAR MOMENTA 77 7.1 Definition of the U-Coefficient . . . . . . . . . . . . . . . . . . 77 7.2 The U-Coefficient in terms of C.G. Coefficients . . . . . . . 78 ix 7.3 Independence of U-Coefficient from Magnetic Quantum Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4 Orthonormality of the U-Coefficients . . . . . . . . . . . . . 80 7.5 The Racah Coefficient and its Symmetry Properties . . . . 81 7.6 Evaluation of Matrix Elements . . . . . . . . . . . . . . . . . 82 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Solutions to Selected Problems . . . . . . . . . . . . . . . . . 85 8 COUPLING OF FOUR ANGULAR MOMENTA 88 8.1 Definition of LS-jj Coupling Coefficient . . . . . . . . . . . . 88 8.2 LS-jj Coupling Coefficient in terms of C.G. Coefficients . . . 89 8.3 Independence of the LS-jj Coupling Coefficients from the Magnetic Quantum Numbers . . . . . . . . . . . . . . . . . . . 91 8.4 Simple Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8.5 Expansion of 9-j Symbol into Racah Coefficients . . . . . . 93 8.6 Evaluation of Matrix Elements . . . . . . . . . . . . . . . . . 95 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 96 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Solutions to Selected Problems . . . . . . . . . . . . . . . . . 97 9 PARTIAL WAVES AND THE GRADIENT FORMULA 100 9.1 Partial Wave Expansion for a Plane Wave . . . . . . . . . . 100 9.2 Distorted Waves . . . . . . . . . . . . . . . . . . . . . . . . . 102 9.3 The Gradient Formula . . . . . . . . . . . . . . . . . . . . . . 103 9.4 Derivation of the Gradient Formula . . . . . . . . . . . . . . 105 9.5 Matrix Elements Involving the ∇ Operator . . . . . . . . . 108 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 112 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Solutions to Selected Problems . . . . . . . . . . . . . . . . 114 10 IDENTICAL PARTICLES 119 10.1 Fermions and Bosons . . . . . . . . . . . . . . . . . . . . . . . 119 10.2 Two Identical Fermions in j-j Coupling . . . . . . . . . . . . 119 10.3 Construction of Three-Fermion Wave Function . . . . . . . 120 10.4 Calculation of Fractional Parentage Coefficients . . . . . . . 123 10.5 The Iso-Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 10.6 The Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.7 The m-scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . 128 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Solutions to Selected Problems . . . . . . . . . . . . . . . . 129

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.