ebook img

Analytical Procedure for Flexible Airfield Pavement Rutting Incorporating Environmental Location ... PDF

269 Pages·2011·21.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytical Procedure for Flexible Airfield Pavement Rutting Incorporating Environmental Location ...

Analytical Procedure for Flexible Airfield Pavement Rutting Incorporating Environmental Location and Groundwater Table Effects by Ramadan A.Salim A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved November 2011 by the Graduate Supervisory Committee: Claudia Zapata, Co-Chair Matthew Witczak, Co-Chair Kamil Kaloush ARIZONA STATE UNIVERSITY December 2011 ABSTRACT The structural design of pavements in both highways and airfields becomes complex when one considers environmental effects and ground water table variation. Environmental effects have been incorporated on the new Mechanistic-Empirical Pavement Design Guide (MEPDG) but little has been done to incorporate environmental effects on airfield design. This work presents a developed code produced from this research study called ZAPRAM, which is a mechanistically based pavement model based upon Limiting Strain Criteria in airfield HMA pavement design procedures. ZAPRAM is capable of pavement and airfield design analyses considering environmental effects. The program has been coded in Visual Basic and implemented in an event-driven, user-friendly educational computer program, which runs in Excel environment. Several studies were conducted in order to insure the validity of the analysis as well as the efficiency of the software. The first study yielded the minimum threshold number of computational points the user should use at a specific depth within the pavement system. The second study was completed to verify the correction factor for the Odemark's transformed thickness equation. Default correction factors were included in the code base on a large comparative study between Odemark's and MLET. A third study was conducted to provide a comparison of flexible airfield pavement design thicknesses derived from three widely accepted design procedures used in practice today: the Asphalt Institute, Shell Oil, and the revised Corps of Engineering rutting failure criteria to calculate the thickness requirements necessary for a range of design input variables. The results of the comparative study showed that there is a significant difference between the i pavement thicknesses obtained from the three design procedures, with the greatest deviation found between the Shell Oil approach and the other two criteria. Finally, a comprehensive sensitivity study of environmental site factors and the groundwater table depth upon flexible airfield pavement design and performance was completed. The study used the newly revised USACE failure criteria for subgrade shear deformation. The methodology utilized the same analytical methodology to achieve real time environmental effects upon unbound layer modulus, as that used in the new AASHTO MEPDG. The results of this effort showed, for the first time, the quantitative impact of the significant effects of the climatic conditions at the design site, coupled with the importance of the depth of the groundwater table, on the predicted design thicknesses. Significant cost savings appear to be quite reasonable by utilizing principles of unsaturated soil mechanics into the new airfield pavement design procedure found in program ZAPRAM. ii DEDICATION This thesis is dedicated to my father Mr. Abdalla Salim, my mother, my sisters, and my brothers for their prayers, love, and support. Furthermore, I would like to dedicate this work to Libyan martyrs who sacrificed for the freedom of the country. iii ACKNOWLEDGMENTS I would like to extend my sincerest appreciation and gratitude for my advisor, Dr. Claudia Zapata, for her constant encouragement, technical guidance throughout the Master Program. I thank Dr. Matthew W. Witczak for the intensive technical discussions and suggestions during this research work. I would like to acknowledge the help of Waleed Zeiada and Daniel Rosenbalm during my studies. Special thanks are due to Dr. Kamil Kaloush for his useful opinions and discussions during this research work. I am grateful to all my friends and colleagues of the Advanced Pavement Group, Department of Civil and Environmental Engineering at Arizona State University. Finally, I am forever indebted to all my family members for their constant encouragement and support in every moment of my life. iv TABLE OF CONTENTS Page LIST OF TABLES……………………………………………………………………...viii LIST OF FIGURES……………………………………………………………………..xiii CHAPTER 1 INTRODUCTION .................................................................................................. 1 1.1 Introduction ..................................................................................................... 1 1.2 Scope of Work ................................................................................................. 3 1.3 Research Objectives ......................................................................................... 4 1.4 Organization .................................................................................................... 5 2 LITERATURE REVIEW ........................................................................................ 7 2.1 Introduction: .................................................................................................... 7 2.2 ZAPMEDACA Software ................................................................................. 8 2.3 ZAPMEDACA Software Modules ................................................................... 8 3 ENHANCEMENT OF ZAPMEDACA SOFTWARE ............................................. 29 3.1 ZAPRAM Software ....................................................................................... 29 3.2 ZAPRAM Software Modules ......................................................................... 30 4 EVALUATION OF OPTIMAL DIFFERENTIAL AREAS IN NUMERICAL INTEGRATION PROCESS ................................................................................. 72 4.1 Introduction ................................................................................................... 72 4.2 Selected Aircraft: ........................................................................................... 73 4.3 Pavement System Utilized: ............................................................................. 75 4.4 Plan Study: .................................................................................................... 75 4.5 The Study for Deep Depth (Z=150.00 in). ....................................................... 76 4.6 The Study for Mid Depth (Z=79.57 in). .......................................................... 87 v CHAPTER Page 4.7 The Study for Shallow Depth (Z=20.00 in). .................................................... 93 4.8 Impact of the Computed Depth on Number of Computational Points................ 99 4.9 Conclusions of the Study: ............................................................................. 105 5 STRESS AND STRAIN ANALYSIS IN ZAPRAM .............................................. 108 5.1 Introduction ................................................................................................. 108 5.2 Corroborate the Validity of the Program ....................................................... 108 5.3 The Correction Factor “f”: ............................................................................ 121 5.4 Conclusion .................................................................................................. 165 6 COMPARISON OF AIRFIELD FLEXIBLE PAVEMENT DESIGN THICKNESS BASED UPON DIFFERING AGENCY LIMITING SUBGRADE STRAIN CRITERIA ........................................................................................................ 166 6.1 Introduction ................................................................................................. 166 6.2 Objective ..................................................................................................... 166 6.3 Experimental Factorial ................................................................................. 167 6.4 Results and Analysis .................................................................................... 169 6.5 Influence of Design Factors .......................................................................... 171 6.6 Comparison of Criteria ................................................................................. 173 6.7 Statistical Summary of Agency Pavement Design ......................................... 175 6.8 Conclusions ................................................................................................. 178 7 IMPACT OF ENVIRONMENTAL SITE LOCATION AND GROUNDWATER TABLE DEPTH ON THE THICKNESS OF FLEXIBLE AIRFIELD PAVEMENTS ..................... ..................................................................................................... 180 7.1 Introduction ................................................................................................. 180 7.2 Objective ........................................................................................................... vi CHAPTER Page 7.3 Background of Environmental Effects .......................................................... 182 7.4 Experimental Matrix .................................................................................... 183 7.5 Pavement Structure ...................................................................................... 186 7.6 Subgrade Soil Modulus Variations................................................................ 186 7.7 Results and Analysis .................................................................................... 188 7.8 Discussion of Results ................................................................................... 191 7.9 Summary and Conclusions ........................................................................... 195 8 SUMMARY AND CONCLUSIONS .................................................................. 197 8.1 Summary ..................................................................................................... 197 8.2 Conclusions ................................................................................................. 199 9 RECOMMENDATIONS AND FUTURE STUDIES .......................................... 207 REFERENCES ....................................................................................................... 212 APPENDIX A USER’S OPERATIONAL GUIDE ...................................................................... 215 A.1 Introduction ................................................................................................. 216 A.2 Main Screen: ............................................................................................... 218 A.3 Load Configuration Module: ........................................................................ 219 A.4 Pavement Structure Module ......................................................................... 226 A.5 Traffic Analysis ........................................................................................... 228 A.6 Environmental Effects Module ..................................................................... 233 A.7 Stress Analysis Module ................................................................................ 235 A.8 Design Rutting Criteria ................................................................................ 238 vii LIST OF TABLES Table Page 2-1 Mean Possible Duration of Sunlight – Northern Hemisphere (Day-Length Correction Factor in Units of 30 Days of 12 Hours) ................................................................14 2-2 Mean Possible Duration of Sunlight – Southern Hemisphere (Day-Length Correction Factor in Units of 30 Days of 12 Hours) ................................................................15 2-3 Constants for TMI-P200 Model for Base Coarse-grained Materials .........................16 2-4 Regression Constants for TMI-P200/wPI Model for Subbase/Subgrade Materials ...17 3-1 Listing of all the Specific Aircraft Types that Include d in the Library .....................31 3-2 The Currently Available Cities that are Included in the City Library ........................36 3-3 Input Type Gear Arrangement .................................................................................37 3-4 The Coordinate of Point of Interest for Single Tire Aircraft .....................................38 3-5 The Coordinate of Point of Interest for Dual Tire Aircraft .......................................39 3-6 The Coordinate of Point of Interest for Single Tandem Aircraft ...............................39 3-7 The Coordinate of Point of Interest for Dual Tandem Aircraft .................................40 3-8 The Coordinate of Point of Interest for Tri-Tandem Aircraft ....................................41 3-9 The Coordinate of Point of Interest for C5A Aircraft ...............................................43 3-10 The Coordinate of Point of Interest for Twin-Twin Aircraft ...................................45 3-11 The Coordinate of Point of Interest for A-380 Aircraft ..........................................46 3-12 The Coordinate of Point of Interest for B-747Aircraft............................................48 3-13 Shell Oil Limiting Vertical Strain Criteria (Airfields) ............................................54 3-14 The Limiting Vertical Strain Criteria Summary (MS-11) Airfield ..........................56 3-15 Limiting Vertical Strain Criteria (MS-11 Airfield) .................................................58 3-16 Vertical Subgrade Strain Computations by Moduli ................................................60 3-17 USACE-WES Limiting Vertical Strain Criteria (β-Airfield) ..................................62 viii Table Page 4-1 Properties of Layer Materials in Pavement Structure ...............................................75 4-2 Analysis for Circular Tire Imprint Shape ( Z=150 in) ..............................................77 4-3 Analysis for Elliptical Tire Imprint Shape (Z=150 in) ..............................................80 4-4 Analysis for Elliptical Tire Imprint Shape (Z=150 in) - 360/dϕ is Integer ................83 4-5 Analysis for Elliptical Tire Imprint Shape (Z=150 in) - 360/dϕ Is Integer and Even .85 4-6 Analysis for Circular Tire Imprint Shape (Z=79.57 in) ............................................88 4-7 Analysis for Elliptical Tire Imprint Shape (Z=79.57 in) ...........................................91 4-8 Analysis for Circular Tire Imprint Shape (Z=20 in) .................................................94 4-9 Analysis for Elliptical Tire Imprint Shape (Z=20 in)................................................97 4-10 Analysis for Circular Tire Imprint Shape ............................................................. 100 4-11 Analysis for Elliptical Tire Imprint Shape ........................................................... 103 5-1 JULEA (1 Layer) and ZAPRAM Comparison for Boeing B737-600 ..................... 113 5-2 JULEA (1 Layer) and ZAPRAM Comparison for Airbus INDUSTRIE A300-C4 .. 113 5-3 JULEA (3 Layers) and ZAPRAM Comparison for Boeing B737-600 .................... 118 5-4 JULEA (3 Layers) and ZAPRAM Comparison for Airbus INDUSTRIE A300-C4 . 118 5-5 JULEA (3 Layers) and ZAPRAM comparison for the 1st pavement system with different correction factors. ................................................................................. 122 5-6 JULEA (3 Layers) and ZAPRAM comparison for the 2nd pavement system with different correction factors. ................................................................................. 122 5-7 JULEA (3 Layers) and ZAPRAM comparison for the 3rd pavement system with different correction factors. ................................................................................. 123 5-8 JULEA (3 Layers) and ZAPRAM comparison for the 4th pavement system with different correction factors. ................................................................................. 123 ix

Description:
unsaturated soil mechanics into the new airfield pavement design procedure found in program ZAPRAM. effects technology directly into structural pavement design software codes developed for flexible airfield pavement structure from an enhanced application of Odemark's transformation theory of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.