ebook img

Analysis of Poverty Data by Small Area Estimation PDF

471 Pages·2016·5.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of Poverty Data by Small Area Estimation

(cid:2) Analysis of Poverty Data by Small Area Estimation (cid:2) (cid:2) (cid:2) (cid:2) WILEYSERIESINSURVEYMETHODOLOGY EstablishedinpartbyWalterA.ShewhartandSamuelS.Wilks Editors:MickP.Couper,GrahamKalton,LarsLyberg,J.N.K.Rao,NorbertSchwarz, ChristopherSkinner EditorEmeritus:RobertM.Groves Acompletelistofthetitlesinthisseriesappearsattheendofthisvolume. (cid:2) (cid:2) (cid:2) (cid:2) Analysis of Poverty Data by Small Area Estimation Editedby MonicaPratesi UniversityofPisa,Italy (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2016. ©2016JohnWileyandSonsLtd Registeredoffic JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUK Copyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itis soldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthe publishernortheauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladviceorotherexpert assistanceisrequired,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationDataappliedfor AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:9781118815014 (cid:2) Setin10/12pt,TimesLTStdbySPiGlobal,Chennai,India. (cid:2) 1 2016 (cid:2) (cid:2) Contents Foreword xv Preface xvii Acknowledgements xxiii AbouttheEditor xxv ListofContributors xxvii 1 IntroductiononMeasuringPovertyatLocalLevelUsingSmallArea (cid:2) (cid:2) EstimationMethods 1 MonicaPratesiandNicolaSalvati 1.1 Introduction 1 1.2 TargetParameters 2 1.2.1 Definitio oftheMainPovertyIndicators 2 1.2.2 DirectandIndirectEstimateofPovertyIndicatorsatSmallAreaLevel 3 1.3 Data-relatedandEstimation-relatedProblemsfortheEstimationofPoverty Indicators 5 1.4 Model-assistedandModel-basedMethodsUsedfortheEstimationofPoverty Indicators:aShortReview 7 1.4.1 Model-assistedMethods 7 1.4.2 Model-basedMethods 12 References 15 PartI DEFINITIONOFINDICATORSANDDATACOLLECTIONAND INTEGRATIONMETHODS 2 RegionalandLocalPovertyMeasures 21 AchilleLemmiandTomaszPanek 2.1 Introduction 21 2.2 Poverty – DilemmasofDefinition 22 (cid:2) (cid:2) vi Contents 2.3 AppropriateIndicatorsofPovertyandSocialExclusionatRegionaland LocalLevels 23 2.3.1 AdaptationtotheRegionalLevel 23 2.4 MultidimensionalMeasuresofPoverty 25 2.4.1 MultidimensionalFuzzyApproachtoPovertyMeasurement 25 2.4.2 FuzzyMonetaryDepthIndicators 26 2.5 Co-incidenceofRisksofMonetaryPovertyandMaterialDeprivation 30 2.6 ComparativeAnalysisofPovertyinEURegionsin2010 31 2.6.1 DataSource 31 2.6.2 ObjectofInterest 31 2.6.3 ScopeandAssumptionsoftheEmpiricalAnalysis 32 2.6.4 RiskofMonetaryPoverty 32 2.6.5 RiskofMaterialDeprivation 33 2.6.6 RiskofManifestPoverty 37 2.7 Conclusions 38 References 39 3 AdministrativeandSurveyDataCollectionandIntegration 41 AlessandraColi,PaoloConsoliniandMarcelloD’Orazio 3.1 Introduction 41 3.2 MethodstoIntegrateDatafromDifferentDataSources:Objectivesand MainIssues 43 (cid:2) (cid:2) 3.2.1 RecordLinkage 43 3.2.2 StatisticalMatching 46 3.3 AdministrativeandSurveyDataIntegration:SomeExamplesofApplicationin Well-beingandPovertyStudies 50 3.3.1 DataIntegrationforMeasuringDisparitiesinEconomicWell-being attheMacroLevel 51 3.3.2 CollectionandIntegrationofDataattheLocalLevel 53 3.4 ConcludingRemarks 56 References 57 4 SmallAreaMethodsandAdministrativeDataIntegration 61 Li-ChunZhangandCaterinaGiusti 4.1 Introduction 61 4.2 Register-basedSmallAreaEstimation 63 4.2.1 SamplingError:AStudyofLocalAreaLifeExpectancy 63 4.2.2 MeasurementErrorduetoProgressiveAdministrativeData 65 4.3 AdministrativeandSurveyDataIntegration 68 4.3.1 CoverageErrorandFinite-populationBias 68 4.3.2 RelevanceErrorandBenchmarkedSyntheticSmallAreaEstimation 70 4.3.3 ProbabilityLinkageError 75 4.4 ConcludingRemarks 80 References 81 (cid:2) (cid:2) Contents vii PartII IMPACTOFSAMPLINGDESIGN,WEIGHTINGANDVARIANCE ESTIMATION 5 ImpactofSamplingDesignsinSmallAreaEstimationwithApplications toPovertyMeasurement 85 JanPabloBurgard,RalfMünnichandThomasZimmermann 5.1 Introduction 85 5.2 SamplingDesignsinourStudy 87 5.3 EstimationofPovertyIndicators 90 5.3.1 Design-basedApproaches 90 5.3.2 Model-basedEstimators 92 5.4 MonteCarloComparisonofEstimationMethodsandDesigns 96 5.5 SummaryandOutlook 105 Acknowledgements 106 References 106 6 Model-assistedMethodsforSmallAreaEstimationofPovertyIndicators 109 RistoLehtonenandAriVeijanen 6.1 Introduction 109 6.1.1 General 109 6.1.2 ConceptsandNotation 110 6.2 Design-basedEstimationofGiniIndexforDomains 111 (cid:2) 6.2.1 Estimators 111 (cid:2) 6.2.2 SimulationExperiments 114 6.2.3 EmpiricalApplication 116 6.3 Model-assistedEstimationofAt-risk-ofPovertyRate 117 6.3.1 AssistingModelsinGREGandModelCalibration 117 6.3.2 GeneralizedRegressionEstimation 119 6.3.3 ModelCalibrationEstimation 120 6.3.4 SimulationExperiments 122 6.3.5 EmpiricalExample 123 6.4 Discussion 124 6.4.1 EmpiricalResults 124 6.4.2 InferentialFramework 125 6.4.3 DataInfrastructure 125 References 126 7 VarianceEstimationforCumulativeandLongitudinalPovertyIndicators fromPanelDataatRegionalLevel 129 GianniBetti,FrancescaGagliardiandVijayVerma 7.1 Introduction 129 7.2 Cumulativevs.LongitudinalMeasuresofPoverty 130 7.2.1 CumulativeMeasures 130 7.2.2 LongitudinalMeasures 131 7.3 PrincipleMethodsforCross-sectionalVarianceEstimation 131 (cid:2) (cid:2) viii Contents 7.4 ExtensiontoCumulationandLongitudinalMeasures 133 7.5 PracticalAspects:SpecificationofSampleStructureVariables 134 7.6 PracticalAspects:DesignEffectsandCorrelation 136 7.6.1 ComponentsoftheDesignEffect 136 7.6.2 EstimatingtheComponentsofDesignEffect 138 7.6.3 EstimatingotherComponentsusingRandomGroupingofElements 139 7.7 CumulativeMeasuresandMeasuresofNetChange 140 7.7.1 EstimationoftheMeasures 140 7.7.2 VarianceEstimation 141 7.8 AnApplicationtoThreeYears’Averages 141 7.8.1 ComputationGivenLimitedInformationonSampleStructurein EU-SILC 141 7.8.2 DirectComputation 144 7.8.3 EmpiricalResults 145 7.9 ConcludingRemarks 146 References 147 PartIII SMALLAREAESTIMATIONMODELINGANDROBUSTNESS 8 ModelsinSmallAreaEstimationwhenCovariatesareMeasured withError 151 SerenaArima,GauriS.DattaandBruneroLiseo (cid:2) (cid:2) 8.1 Introduction 151 8.2 FunctionalMeasurementErrorApproachforArea-levelModels 153 8.2.1 FrequentistMethodforFunctionalMeasurementErrorModels 154 8.2.2 BayesianMethodforFunctionalMeasurementErrorModels 156 8.3 SmallAreaPredictionwithaUnit-levelModelwhenanAuxiliaryVariableis MeasuredwithError 156 8.3.1 FunctionalMeasurementErrorApproachforUnit-levelModels 157 8.3.2 StructuralMeasurementErrorApproachforUnit-levelModels 160 8.4 DataAnalysis 162 8.4.1 Example1:MedianIncomeData 162 8.4.2 Example2:SAIPEData 165 8.5 DiscussionandPossibleExtensions 169 Acknowledgements 169 Disclaimer 170 References 170 9 RobustDomainEstimationofIncome-basedInequalityIndicators 171 NikosTzavidisandStefanoMarchetti 9.1 Introduction 171 9.2 DefinitionofIncome-basedInequalityMeasures 172 9.3 RobustSmallAreaEstimationofInequalityMeasureswithM-quantile Regression 173 9.4 MeanSquaredErrorEstimation 176 (cid:2)

Description:
A comprehensive guide to implementing SAE methods for poverty studies and poverty mapping There is an increasingly urgent demand for poverty and living conditions data, in relation to local areas and/or subpopulations. Policy makers and stakeholders need indicators and maps of poverty and living con
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.