ebook img

analysis methods for airborne radioactivity PDF

204 Pages·2008·2.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview analysis methods for airborne radioactivity

TKK Dissertations 129 Espoo 2008 ANALYSIS METHODS FOR AIRBORNE RADIOACTIVITY Doctoral Dissertation Jarmo J. Ala-Heikkilä Helsinki University of Technology Faculty of Information and Natural Sciences Department of Engineering Physics TKK Dissertations 129 Espoo 2008 ANALYSIS METHODS FOR AIRBORNE RADIOACTIVITY Doctoral Dissertation Jarmo J. Ala-Heikkilä Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium K216 at Helsinki University of Technology (Espoo, Finland) on the 20th of August, 2008, at 12 noon. Helsinki University of Technology Faculty of Information and Natural Sciences Department of Engineering Physics Teknillinen korkeakoulu Informaatio- ja luonnontieteiden tiedekunta Teknillisen fysiikan laitos Distribution: Helsinki University of Technology Faculty of Information and Natural Sciences Department of Engineering Physics P.O. Box 4100 FI - 02015 TKK FINLAND URL: http://www.tkk.fi/Units/AES/ Tel. +358-9-451 3198 Fax +358-9-451 3195 E-mail: [email protected] © 2008 Jarmo J. Ala-Heikkilä ISBN 978-951-22-9439-8 ISBN 978-951-22-9440-4 (PDF) ISSN 1795-2239 ISSN 1795-4584 (PDF) URL: http://lib.tkk.fi/Diss/2008/isbn9789512294404/ TKK-DISS-2491 Yliopistopaino Helsinki 2008 AB ABSTRACT OFDOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY P.O.BOX1000,FI-02015TKK http://www.tkk.fi Author JarmoJohannesAla-Heikkilä Nameofthedissertation AnalysisMethodsforAirborneRadioactivity Manuscriptsubmitted 11.02.2008 Manuscriptrevised 23.05.2008 Dateofthedefence 20.08.2008 X Monograph Articledissertation(summary+originalarticles) Faculty FacultyofInformationandNaturalSciences Department DepartmentofEngineeringPhysics Fieldofresearch Radiationphysics Opponent(s) Prof. StanleyG.Prussin Supervisor Prof. RainerSalomaa Instructor D.Sc. PerttiAarnio Abstract High-resolutiongamma-rayspectrometryisananalysismethodwellsuitableformonitoringairborneradioactivity. Manyofthenaturalradionuclidesandamajorityofanthropogenicnuclidesareprominentgamma-rayemitters. With gamma-rayspectrometrydifferentradionuclidesarereadilyobservedatminuteconcentrationsthatarefarfromhealth hazards.Thegamma-rayspectrometricanalysesappliedinairmonitoringprogrammescanbedividedintoparticulate measurementsandgasmeasurements.Inthiswork,methodsapplicableforparticulatesampleanalysishavebeen presented,implementedinanalysissoftware,andevaluatedwithawidevarietyofcases. Ourgoalhasbeentodevelop acollectionoftoolsthatenablesacompletequantitativeexplanationofallcomponentsofameasuredgamma-ray spectrumwithaminimumofuserintervention. Inahigh-resolutionspectrum,allessentialinformationiscontainedinthepeaks.Mostofthemarefull-energypeaks thatcanbeexplainedwithgamma-raylinesinareferencelibrary.Amongthefull-energypeaks,however,thereare annihilationescapepeaks,X-rayescapepeaks,coincidencesumpeaks,andrandomsumpeaksthatarenottabulated. Calculationmethodsforthesespecialpeaksarepresented,implementedinSHAMAN,andevaluatedinthiswork. ExpertsystemSHAMANcombinesacomprehensiveENSDF-basedreferencelibrarywithaninferenceenginethat appliespruningrulestoselecttheacceptablecandidatenuclides,utilizingacollectionofcalculationalmethods.Its performancewithairfilterspectraisevaluatedinthisworkwithfourdifferentspectrumsets. Theperformanceof SHAMANisalsobenchmarkedagainstanotheridentificationsoftwareincompletelyautomatedanalysis. Insummary,expertsystemSHAMANiswellapplicableatanyorganizationwhereenvironmentalradioactivityis monitored.Thesystemcanalsobeutilizedinotherapplications,butthecurrentrulebasehasbeentailoredmost comprehensivelyforairfilterspectra.Theanalysiscapabilitiesofthesystemcanbeimprovedinotherapplicationsof gamma-rayspectrometrybytuningtheanalysisparametersofthesystem. Naturally,thereisstillroomfor improvementinthemethodologyofSHAMAN,butalreadywiththecurrentlyimplementedfeaturesitisareliable expertsystemfornuclideidentification. Keywords gamma-rayspectrometry,airborneradioactivity,radionuclideidentification ISBN(printed) 978-951-22-9439-8 ISSN(printed) 1795-2239 ISBN(pdf) 978-951-22-9440-4 ISSN(pdf) 1795-4584 Language English Numberofpages 188p. Publisher TKK Printdistribution TKK X Thedissertationcanbereadathttp://lib.tkk.fi/Diss/2008/isbn9789512294404/ AB VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU PL1000,02015TKK http://www.tkk.fi Tekijä JarmoJohannesAla-Heikkilä Väitöskirjannimi Analyysimenetelmiäilmanradioaktiivisuudenvalvontaan Käsikirjoituksenpäivämäärä 11.02.2008 Korjatunkäsikirjoituksenpäivämäärä 23.05.2008 Väitöstilaisuudenajankohta 20.08.2008 X Monografia Yhdistelmäväitöskirja(yhteenveto+erillisartikkelit) Tiedekunta Informaatio-jaluonnontieteidentiedekunta Laitos Teknillisenfysiikanlaitos Tutkimusala Säteilyfysiikka Vastaväittäjä(t) Prof. StanleyG.Prussin Työnvalvoja Prof. RainerSalomaa Työnohjaaja TkTPerttiAarnio Tiivistelmä Korkeanresoluutiongammaspektrometriaonanalyysimenetelmä,jokasoveltuuhyvinilmanradioaktiivisuuden valvontaan,silläuseimmatluonnollisetjaihmisentekemätradionukliditlähettävätgammasäteilyä.Käytännössä gammaspektrometriallaonmahdollistahavaitaminimaalisiaaktiivisuuspitoisuuksia,jotkaeivätolelähelläkään terveysriskiä.Gammaspektrometrisetanalyysitvoidaanjaotellahiukkas-jakaasunäytemittauksiin.Tässätyössä esitelläänmenetelmiähiukkasnäytteidenanalyysiin,ohjelmoidaannetietokoneohjelmaksijaarvioidaanniiden käyttökelpoisuussuurentestispektrijoukonavulla. Tavoitteenaonkehittääsellainentyökalukokoelma,jonkaavulla kaikkigammaspektrinkomponentitvoidaanselittääkvantitatiivisestijajokatoimiimahdollisimmanautomaattisesti. Korkeanresoluutiongammaspektrissäkaikkitietoonspektrinpiikeissä. Suurinosapiikeistäontäysenergiapiikkejä, joitavastaavatgammaviivatlöytyvätreferenssikirjastosta.Täysenergiapiikkienseassaonkuitenkin annihilaatiopakopiikkejä,röntgenpakopiikkejä,koinsidenssisummapiikkejäjasatunnaissummapiikkejä,joitaeiole taulukoitu.Tässätyössäesitellään,ohjelmoidaanjaevaluoidaanlaskentamenetelmiänäilleerikoispiikeille. TyössäonkehitettyasiantuntijajärjestelmäSHAMANia. SeyhdistääkattavanENSDF-pohjaisenreferenssikirjastonja laskentamenetelmätpäättelykoneeseen,jokakäyttääkarsintasääntöjäanalysoitavannäytteenoikean nuklidikoostumuksenpäättelemiseen. SHAMANinsuorituskykyilmafiltterienanalyysissaevaluoidaantässätyössä neljänlaajanspektrikokoelmanavulla. Lisäksisuorituskykyäarvioidaanvertailemallatuloksiatoisen tunnistusohjelmistonsaavuttamiin. Yhteenvetonavoidaantodeta,ettäSHAMANsoveltuumainiostiluonnonradioaktiivisuudenvalvontatehtävään.Sitä voidaankäyttäämyösmuissasovelluskohteissa,joissapyritääntäydelliseengammaspektrintulkintaan,mutta nykyversiontietämyskantaonparhaitenräätälöityilmafiltterispektreille.Analyysikykyämuissasovelluksissavoidaan parantaaohjelmistonparametrejasäätämällä. MyösSHAMANinmetodologiassaonkehittämisenvaraa,muttajo nykyisillälaskentamenetelmilläseonluotettavaasiantuntijajärjestelmäradionuklidientunnistukseen. Asiasanat gammasäteily,gammaspektrometria,radioaktiivisuusvalvonta,radionuklidientunnistus ISBN(painettu) 978-951-22-9439-8 ISSN(painettu) 1795-2239 ISBN(pdf) 978-951-22-9440-4 ISSN(pdf) 1795-4584 Kieli englanti Sivumäärä 188s. Julkaisija TKK Painetunväitöskirjanjakelu TKK X Luettavissaverkossaosoitteessahttp://lib.tkk.fi/Diss/2008/isbn9789512294404/ Abstract High-resolution gamma-ray spectrometry is an analysis method well suitable for monitoring airborne radioactivity. Many of the natural radionuclides as well as a majority of anthropogenic nuclides are prominent gamma-ray emitters. With gamma-ray spectrometry different radionuclides are readily observed at minute concentrations that are far from health hazards. Thus, measurements during normal conditions and minor anthropogenic releases can be utilized to increase sensitivity of analysis methods and to learn to distinguish between source terms from different release types. Thegamma-rayspectrometricanalyses appliedinairmonitoringprogrammescan bedividedintoparticulatemeasurements andgasmeasurements, ofwhichthefor- mer category is technologically more mature. In this work, methods applicable for particulatesample analysis have been presented, implemented in analysis soft- ware, and evaluated with a wide variety of cases. Our goal has been to develop a collection of tools that enables a complete quantitative explanation of all compo- nents of a measured gamma-ray spectrum with a minimum of user intervention. The importance of accurate and precise calibrations cannot be overestimated. Energy and peak efficiency calibrations are fundamental for spectrum analysis, since they are needed to convert the peak positions and areas to energies and emission rates and further to nuclide identifications and quantifications. Use of a shape calibration can also be recommended for its stabilizing effect on peak search and area determination. If measurements are made in a close geometry, a total efficiency calibration is also needed in order to enable corrections for true coincidence summing effects. In a high-resolution spectrum, all essential information is contained in the peaks. Most of them are full-energy peaks that can be explained with gamma-raylines in a reference library. Among the full-energy peaks, however, there are annihilation escape peaks, X-ray escape peaks, coincidence sum peaks, and random sum peaks that are not tabulated. They need to be explained quantitatively if a complete interpretation of a measured spectrum is aimed at. Calculation methods for these special peaks are presented, implemented, and evaluated in this work. Expert system Shaman combines a comprehensive ENSDF-based reference li- brary with an inference engine that applies pruning rules to select the acceptable candidate nuclides, and with a collection of calculational methods including the above-mentioned ones. Its performance with particulate air filter spectra has been evaluated in this work with four different spectrum sets. Two of the sets have been produced at different times by a global monitoring network that has been set up for the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and the two other sets, measured after two minor anthropogenic releases, by the Finnish monitoring network run by STUK (S¨ateilyturvakeskus, Finnish Radiation and Nuclear Safety Authority). i In the first CTBT-related set of 250 spectra the peak analysis was made with tailor-made analysis software based on Genie. Its output was analyzed with two Shaman versions and they both obtained a nuclide identification percentage and a peak identification percentage of approximately 99% each. The spurious nuclide percentage was 4–7%, translating to 0.4–0.7 spurious identifications per spectrum. These results were obtained in a completely automated analysis mode, so they can be considered excellent. The second CTBT-related set included 6161spectra thatwere not analyzed man- ually unlike the first spectrum set, only with an automated UniSampo–Shaman pipeline system. Without a manual analysis we presented uncorrected peak iden- tification percentages and uncorrected average numbers of spurious nuclides of 96.4% and 0.96, respectively. Both figures are less ideal than for the previous spectrum set, but the explanation is that a smaller peak search threshold has been utilized in the peak analysis phase. Therefore, the average number of peaks is much larger than that in the first set and especially the share of small peaks has increased. The performance level can still be considered very good, even if there is some room for improvement. Thespectrumsetsofthenationalnetworkhadbeenmeasuredafterminorreleases fromNovayaZemlyainAugust1987andSosnovyyBorinMarch1992. Bothspec- trumsets were analyzed with Sampoininteractive modeand thenidentified with Shaman, so the results are not directly comparable to the automated analysis results referred to above. However, these two spectrum sets showed that the iden- tificationperformance of Shaman is not degraded in cases where air filter spectra contain fission and activation products in addition to natural radioactivity. The performance of Shaman was benchmarked against another identification software based on Genie in two intercomparisons. In both cases, the results from automated analysis were compared, thus neglecting the effect of a human analyst that can compensate for errors in automated results. The first intercomparison truly measured the difference in nuclide identification, since the same peak results were fed into both identification implementations. In the second intercomparison two automated analysis pipelines were compared where also the peak analysis results are different due to different software. In both intercomparisons, Shaman had a clear advantage in nuclide identification and peak explanation. The sta- tistically inevitable disadvantage, a larger number of spurious nuclides, remained under control. In summary, the UniSampo–Shaman pipeline system is well applicable at any organization where environmental radioactivity is monitored. The system can also be utilized in other applications, but the current rule base of expert system Shamanhasbeentailoredmost comprehensively forair filterspectra. The analy- sis capabilities of the system can be improved in other applications of gamma-ray spectrometry by tuning the analysis parameters of the system. This should not require but a modest effort of an end-user who has the application-specific exper- tiseandhassomescripting experience since amajorpartofShaman’s“expertise” or “intelligence” is in its operating scripts and macros. Naturally, there is still room for improvement in the methodology of Shaman, but with the currently implemented features it is a reliable expert system for nuclide identification. ii Preface This thesis presents the results from a long-lasting development project where the methodology of expert system Shaman has been improved and its perfor- mance has been evaluated at various stages of development. The project has been financed primarily by Helsinki University of Technology (TKK), but over the years financial support has also been obtained fromthe Ministry of Trade and Industry and the Ministry for Foreign Affairs of Finland, as well as from the US Department of Defense throughthe visiting scientist programme of the Prototype International Data Centre (PIDC), Arlington, Virginia. The author is most grateful for this long-term financial support. Especially the extreme patience of my supervisor Prof. R. Salomaa is admirable. I also wish to state my gratitude for the personal grants from the Jenny and Antti Wihuri Foundation and the Swedish Academy of Technical Sciences in Finland (Wilhelm Guerillot Fund) in mid-1990’s. The assistance and co-operation of the radionuclide staff at the PIDC during my two visits in 1996–98is highly appreciated. The following persons contributed tothesuccessinonewayoranother: Dr.N.Duncan,Dr.R.Mason,Dr.W.Evans, Ms. J. Bohlin, Mr. G. Novosel, Mr. E. Pratt, Mr. J. Bohner, Mr. A. Bennett, Mr. J. Nicholson, Dr. K. Biegalski, Dr. S. Biegalski, Dr. L. Vladimirski, Mr. M. Pickering, Mr. M. Wasim, and Mr. D. Williams. Over the years, we have enjoyed a fruitful collaboration with the Security Technology Laboratory (formerly Aerosol Laboratory) of STUK headed by Dr. H. Toivonen, as well as the Finnish National Data Centre (FiNDC) hosted by STUK and headed consecutively by Mr. M. Nikkinen, Mr. A. Isolankila, and Mr. M. Moring. A major part of the research has been done in the Radiation Physics Group of theAdvancedEnergySystemslaboratoryatTKK.Thegroupisnotbigbutitsex- pertise on gamma-ray spectrometry is state-of-the-art. The group leader and my instructor Dr. P. Aarnio has introduced an extremely interesting research subject to me and has led the work with scientific rigor through the years. Mr. T. Hakuli- nen is the father of Shaman who has built and continues to build an exemplarily robust computer code, a solid foundation that allows for further development. Mr. M. Nikkinen has contributed to the Shaman project in his Master’s thesis and later by developing the spectrum analysis software UniSampo, the preferred front-end for Shaman. Prof. Emer. J. Routti, the founder of this group, has shown continued interest in our work, inspiring us to carry on. Additionally, a number of smart summer students have contributed to the research of our group at various stages. The working atmosphere in the Advanced Energy Systems laboratory has been most pleasant and inspiring, but nevertheless, I would like to emphasize the contribution of my family. Without its counterbalancing effect this work may have been completed earlier, but my life would have been much less rewarding. Therefore, I wish to dedicate this work to my dear wife Marika and our four wonderful children, Ida, Fanny, Anton, and Sofia. Jarmo Ala-Heikkil¨a Espoo, May 23, 2008 iii

Description:
Expert system SHAMAN combines a comprehensive ENSDF-based reference library with an inference engine that applies pruning rules to .. Pipeline for Air Filter Gamma-Ray Spectra from the CTBT Verification. Network”. Journal of Radioanalytical and Nuclear Chemistry 263 1 (2005). 251–257.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.