ebook img

Analog Engineer's Circuit Cookbook: ADCs PDF

113 Pages·2017·6.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analog Engineer's Circuit Cookbook: ADCs

IN VREF GND 5.0V 3.0V AVDDDVDD Vin Analog Engineer’s GND e d o Circuit Cookbook: ADCs C Vin Analog Engineer’s Circuit Cookbook: ADCs First Edition Edited by: Art Kay, Luis Chioye and Dale Li Special thanks for technical contribution: Peggy Liska Cynthia Sosa Reed Kaczmarek Bryan McKay Manuel Chavez Analog Engineer’s Circuit Cookbook: ADCs (First Edition) Message from the editors: The Analog Engineer’s Circuit Cookbook: ADCs provides analog-to-digital converter (ADC) sub-circuit ideas that can be quickly adapted to meet your specific system needs. Each circuit is presented as a “definition-by-example.” They include step-by-step instructions, like a recipe, with formulas enabling you to adapt the circuit to meet your design goals. Additionally, all circuits are verified with SPICE simulations and include links to the corresponding TINA-TITM SPICE circuits. We’ve provided at least one recommended ADC for each circuit, but you can swap it with another device if you’ve found one that’s a better fit for your design. You can search our large portfolio of ADCs at www.ti.com/ADCs. Our circuits require a basic understanding of amplifier and data converter concepts. If you’re new to data converter design, we highly recommend completing our TI Precision Labs (TIPL) training series. TIPL includes courses on introductory topics, such as device architecture, as well as advanced, application-specific problem-solving, using both theory and practical knowledge. Check out our curriculum for op amps, ADCs and more at: www.ti.com/precisionlabs. We plan to update this e-book with new ADC circuit building blocks and encourage you to see if your version is the latest at www.ti.com/circuitcookbooks. If you have feedback on any of our existing circuits or would like to request additional ADC circuits for the next edition of this e-book, please contact us at [email protected]. We hope you find our collection of ADC circuits helpful in developing your designs! Additional resources to explore TI Precision Labs ADC Parametric Quick Search ti.com/precisionlabs ti.com/ADC-search • On-demand courses and tutorials ranging from introductory to • Find your next precision or high-speed ADC advanced concepts that focus on application-specific problem solving • Hands-on labs and evaluation modules (EVM) available DIY Amplifier Circuit Evaluation Module (DIYAMP-EVM) ti.com/DIYAMP-EVM - TIPL Op Amps experimentation platform, ti.com/TIPL-amp-evm • Single-channel circuit evaluation module providing SC70, SOT23 - TIPL SAR ADC experimentation platform, ti.com/TIPL-adc-evm and SOIC package options in 12 popular amplifier configurations Analog Engineer’s Pocket Reference Dual-Channel DIY Amplifier Circuit Evaluation Module ti.com/analogrefguide (DUAL-DIYAMP-EVM) • PCB, analog and mixed-signal design formulae; includes conversions, ti.com/dual-diyamp-evm tables and equations • Dual-channel circuit evaluation module in an SOIC-8 package with • e-book, iTunes app and hardcopy available 10 popular amplifier configurations The Signal e-book TINA-TI simulation software ti.com/signalbook ti.com/tool/tina-ti • Short, bite-sized lessons on on op-amp design topics, such as offset • Complete SPICE simulator for DC, AC, transient and noise analysis voltage, input bias current, stability, noise and more • Includes schematic entry and post-processor for waveform math Analog Wire Blog Analog Engineer’s Calculator ti.com/analogwire ti.com/analogcalc • Technical blogs written by analog experts that include tips, tricks and • ADC and amplifier design tools, noise and stability analysis, design techniques PCB and sensor tools TI Designs TI E2E™ Community ti.com/tidesigns ti.com/e2e • Ready-to-use reference designs with theory, calculations, • Support forums for all TI products simulations schematics, PCB files and bench test results The platform bar is a trademark of Texas Instruments. © 2018 Texas Instruments Incorporated. Table of Contents Low-Power/Cost-Optimized Circuits Low-Level Sensor Input Circuits Driving a SAR ADC Directly without a Front-End Buffer Circuit Low-Input Bias Current Front End SAR ADC Circuit .................65 (Low-Power, Low-Sampling-Speed DAQ) ....................................5 Circuit for Driving a Switched-Capacitor SAR ADC with an Low-Power Sensor Measurements: 3.3-V, 1-ksps, 12-Bit, Instrumentation Amplifier ...........................................................70 Single-Ended, Dual-Supply Circuit .............................................10 Circuit for Driving a Switched-Capacitor SAR ADC with a Low-Power Sensor Measurements: 3.3-V, 1-ksps, 12-Bit, Buffered Instrumentation Amplifier .............................................77 Single-Ended, Single-Supply Circuit ..........................................16 Input Protection, Filtering and Isolation Circuits Level Translation Input Drive Circuits Reducing Effects of External RC Filter Circuit on Gain and Drift High-Voltage Battery Monitor Circuit: ±20 V, 0-10 kHz, 18-Bit Error for Integrated Analog Front Ends (AFEs): ±10 V, up to Fully Differential ..........................................................................23 200 kHz, 16-Bit ...........................................................................85 Single-Ended-to-Differential Circuit Using an Op Amp and Fully Antialiasing Filter Circuit Design for Single-Ended ADC Input Differential Amplifier (FDA) for Bipolar Signals ...........................30 Using Fixed Cutoff Frequency ....................................................91 High-Input Impedance, True Differential, Analog Front End (AFE) Digitally-Isolated ADS8689 Circuit Design ...............................100 Attenuator Circuit for SAR ADCs ................................................37 Circuit to Increase Input Range on an Integrated Analog Front Commonly Used Auxiliary Circuits End (AFE) SAR ADC ...................................................................45 Powering a Dual-Supply Op Amp Circuit with One LDO .........104 Circuit for Driving High-Voltage SAR ADCs for High-Voltage, True Differential Signal Acquisition .............................................50 Isolated Power Supply, Low-Noise Circuit: 5 V, 100 mA ..........108 High-Current Battery Monitor Circuit: 0-10 A, 0-10 kHz, 18-Bit ..........................................................................................59 Want more circuits? •DCoirwcunilto Cado othkbe oAonka floorg oEpn agminpeesr’s Analog EngINiGNVnDREFeer’s VinA5V.0DGVDNDD3V.0DVD AnCiarculoit Cgo oEkbnoogki: nOep Aemrp’ss •Browse a complete list of op amp Circuit Cookbook: ADCs Code Vin and ADC circuits Visit ti.com/circuitcookbooks Analog Engineer's Circuit: ADCs SBAA256–January2018 Driving a SAR ADC Directly Without a Front-End Buffer Circuit (Low-Power, Low-Sampling-Speed DAQ) AbhijeetGodbole Design Description Thisdesignexplainshow sensoroutputscanbedirectlyinterfacedwithaSARADCinput.Inapplications suchasEnvironmentalSensors,GasDetectors,andSmokeorFireDetectors,theinputisveryslow- movingandthesensoroutputvoltageissampledatfairlyslowerspeeds(10kspsorso).Insuchorsimilar systems,thesensoroutputcanbedirectlyinterfacedwiththeSARADCinputwithouttheneedfora driver amplifiertoachieveasmallform-factor,low-costdesign. InterfacingSensorOutputDirectlytoa SARADC ThefollowingfigureshowsatypicalapplicationdiagramforinterfacingasensordirectlytoaSARADC inputwithouttheuseofadriveramplifier.Thesensor blockhighlightstheTheveninequivalentofasensor output.Voltagesource,V ,istheThevenin-equivalentvoltageandsourceresistanceR istheThevenin- TH TH equivalentimpedance.MostsensordatasheetsprovidetheTheveninmodelofthesensorfromwhichthe valueoftheseriesimpedancecanbeeasilycalculated. V TH ½ LSB V ( CSH t) SENSOR V0 SAR ADC tAC RTH t0 Q S RSW W + C V SH TH – C FLT SBAA256–January2018 5 Driving a SAR ADC Directly Without a Front-End Buffer SubmitDocumentationFeedback Circuit (Low-Power, Low-Sampling-Speed DAQ) Copyright©2018,TexasInstrumentsIncorporated www.ti.com Specifications Parameter Calculated Simulated Measured TransientADCInputSettling <0.5LSB 36.24µV N/A Error <100.5µV StepInputFullScaleRange 3.15V 3.15V 3.14978 InputSourceImpedance(R ) 10kΩ 10kΩ 10.01kΩ TH FilterCapacitorValue(C ) 680pF 680pF N/A FLT ADCSamplingSpeed 10ksps 10ksps 10ksps DesignNote 1. Determinesourceimpedanceofinputsignal.CalculatetheRCtimeconstantoftheinputsource impedanceandfiltercapacitor(knownvalue). 2. Determinetheminimumacquisitiontimerequired fortheinputsignaltosettleforagivensource impedanceandthefiltercapacitorcombination. 3. SelectCOGcapacitorstominimizedistortion. 4. Use0.1%20ppm/°Cfilmresistorsorbetterforgoodgaindriftandtominimizedistortion. Driving a SAR ADC Directly Without a Front-End Buffer 6 SBAA256–January2018 Circuit (Low-Power, Low-Sampling-Speed DAQ) SubmitDocumentationFeedback Copyright©2018,TexasInstrumentsIncorporated www.ti.com ComponentSelectionfor ADCInputSettling SARADCscanbedirectlyinterfacedwithsensorswhentheanaloginputsourceiscapableofdriving the switchedcapacitorloadofaSARADCandsettlingtheanaloginputsignaltowithin ½ofanLSBwithin theacquisitiontimeoftheSARADC.Toachieve this,theexternalRCfilter(R andC )mustsettle TH FLT withintheacquisitiontime(t )oftheADC.TherelationshipbetweentheADCacquisitiontimeandRC ACQ timeconstantoftheexternalfilteris: t ≥k·Ԏ ACQ FLT where • Ԏ =R ·C FLT TH FLT • kisthesinglepoletimeconstantforNbitADC Thefollowingdesignexamplevaluesaregiveninthetableonpage1: R =10kΩ TH C =680pF FLT K=11(Singlepoletimeconstantmultiplierfor14-bitADC) – Moreinformationisfoundonpage96and page97oftheAnalogEngineer’sPocketReference. Minimumacquisitiontimerequiredforproper settlingiscalculatedusingthisequation: t ≥11·10kΩ·680pF=74.80µs ACQ FormoreinformationonSARADCsandfrontend design forSARADCs,refertoIntroductiontoSAR ADCFront-EndComponentSelection. TransientInputSettlingSimulationusingTI-TINA ThefollowingfigureshowsthesettlingofanADS7056 ADCgivena3.15-VDCinputsignal.Thistypeof simulationshowsthatthesampleandholdkickbackcircuitisproperlyselected.RefertoRefinetheRfilt andCfiltValuesintheTIPrecisionLabs-ADCstrainingvideoseriesfordetailedtheoryonthissubject. SBAA256–January2018 7 Driving a SAR ADC Directly Without a Front-End Buffer SubmitDocumentationFeedback Circuit (Low-Power, Low-Sampling-Speed DAQ) Copyright©2018,TexasInstrumentsIncorporated www.ti.com Increasing AcquisitionTimeofSARADCforInputSignalSettling TheacquisitiontimeofaSARADCcan be increased byreducingthethroughputinthefollowingways: 1. ReducingtheSCLKfrequencytoreducethethroughput. 2. KeepingtheSCLKfixedatthehighestpermissiblevalueandincreasingtheCShightime. ThefollowingtableliststheacquisitiontimefortheprevioustwocasesfortheADS7056 SARADC operatingat10kspsthroughput(tcycle=100µs).Case2providesalongeracquisitiontimefortheinput signaltosettlebecauseoftheincreasedfrequencyoftheSCLKgivenafixedconversionandcycle time. AcquisitionTime Case SCLK t ConversionTime(18·t ) cycle SCLK (t –t ) cycle conv 1 0.24MHz 100µs 74.988µs 25.01µs 2 60MHz 100µs 0.3µs 99.70µs Thefollowingtableshowsaperformancecomparison betweenan8-,10-,12-,and14-bitADCwith respecttosamplingspeedandeffectivenumber ofbits(ENOB)whenasensoroutputwithanoutput impedance of10kΩ isdirectlyinterfacedwiththeADCinput.Asexpected,theENOBdegradeswithhigher samplingratesbecausetheacquisitiontimedecreases. ADS7040(8-bitADC) ADS7041(10-bitADC) ADS7056(14-bitADC) Sampling ADS7042(12-bitADC) Speed(ksps) ENOCBFLT(R=T1H.=5n1F0)kΩ, ENOCBFLT(R=TH1.=5n1F0)kΩ, ENOB(RTH=10kΩ,CFLT=1.5nF) ENOB(RT6H8=0p1F0)kΩ,CFLT= 10 7.93 9.87 10 12.05 100 7.92 9.85 9.97 10.99 500 7.88 9.68 9.95 8.00 PerformanceAchievedatDifferentThroughput RateswithDifferentSourceimpedance ThefollowingfigureprovidestheENOBachievedfromtheADS7056atdifferentthroughoutwithdifferent inputimpedances.NotethatalltheresultsforweretakenwithoutanADCdriveramplifier. 12.5 12 11.5 s) Bit B ( 11 O N E 10.5 33Ohm, 680pF 330Ohm, 680pF 10 3.3kOhm, 680pF 10kOhm, 680pF 20kOhm, 680pF 9.5 2 22 42 62 82 100 Sampling Speed(kSPS) D039 Driving a SAR ADC Directly Without a Front-End Buffer 8 SBAA256–January2018 Circuit (Low-Power, Low-Sampling-Speed DAQ) SubmitDocumentationFeedback Copyright © 2018, Texas Instruments Incorporated www.ti.com DesignFeaturedDevices: Device KeyFeatures Link OtherPossibleDevices 8-bitresolution,SPI,1-Mspssamplerate,single- ADS7040 endedinput,AVDD/Vrefinputrange1.6Vto http://www.ti.com/product/ADS7040 SimilarDevices 3.6V. 10-bitresolution,SPI,1Mspssamplerate, ADS7041 single-endedinput,AVDD/Vrefinputrange1.6V http://www.ti.com/product/ADS7041 SimilarDevices to3.6V. 12-bitresolution,SPI,1-Mspssamplerate, ADS7042 single-endedinput,AVDD/Vrefinputrange1.6V http://www.ti.com/product/ADS7042 SimilarDevices to3.6V. 14-bitresolution,SPI,2.5-Mspssamplerate, ADS7056 single-endedinput,AVDD/Vrefinputrange1.6V http://www.ti.com/product/ADS7056 SimilarDevices to3.6V. NOTE: TheADS7042andADS7056usetheAVDDasthereferenceinput.Ahigh-PSRRLDO,such astheTPS7A47,shouldbeusedasthepowersupply. Linkto Keyfiles SourceFilesforInterfacingSensorOutputDirectlywithSARADCs (http://www.ti.com/lit/zip/sbac178) FordirectsupportfromTIEngineersusetheE2Ecommunity: e2e.ti.com OtherLinks www.ti.com/adcs www.ti.com/opamp SBAA256–January2018 9 Driving a SAR ADC Directly Without a Front-End Buffer SubmitDocumentationFeedback Circuit (Low-Power, Low-Sampling-Speed DAQ) Copyright©2018,TexasInstrumentsIncorporated Analog Engineer's Circuit: ADCs SBAA251–November2017 Low-Power Sensor Measurements: 3.3-V, 1-ksps, 12-bit, Single-Ended, Dual-Supply Circuit ReedKaczmarek Input ADCInput DigitalOutputADS7042 V =0V AIN_P=0V,AIN_M=0V 000 or0 inMin H 10 V =3.3V AIN_P=3.3V,AIN_M=0V FFF or4096 inMax H 10 PowerSupplies AVDD V V ee dd 3.3V –0.3V 4.5V DesignDescription Thisdesignshowsanlow-poweramplifierbeing usedtodriveaSARADCthatconsumesonlynWof powerduringoperation.Thisdesignisintendedforsystemscollectingsensordataandrequirealow- powersignalchainwhichonlyburnssingle-digitµWofpower.PIRsensors,gassensors,andglucose monitorsareafewexamplesofpower-sensitivesystemsthatbenefitfromthisSARADCdesign.The valuesinthecomponentselectionsectioncanbeadjustedtoallowfordifferentdatathroughputratesand differentbandwidthamplifiers.Low-PowerSensorMeasurements:3.3V,1 ksps,12-bitSingle-Ended, SingleSupplyshowsasimplifiedversionofthiscircuitwherethenegativesupplyisgrounded.The –0.3-V negativesupplyinthisexampleisusedtoachievethebestpossiblelinearinputsignalrange.SeeSAR ADCPowerScalingforadetaileddescriptionoftrade-offsinlow-powerSARdesign. AVDD 3.3V Vdd 4.5V 0.1(cid:29)F 0.1(cid:29)F - + Rfilt (cid:159) 200k AVDD LPV811 AinP + ADS7042 C + filt AinM 510pF Vee -0.3V V SENSOR Copyright © 2017, Texas Instruments Incorporated SBAA251–November2017 10 Low-Power Sensor Measurements: 3.3-V, 1-ksps, SubmitDocumentationFeedback 12-bit, Single-Ended, Dual-Supply Circuit Copyright©2017,TexasInstrumentsIncorporated

Description:
Circuit (Low-Power, Low-Sampling-Speed DAQ). Analog Engineer's Circuit: ADCs. SBAA256–January 2018. Driving a SAR ADC Directly Without a Front-End Buffer. Circuit (Low-Power, Low-Sampling-Speed DAQ). AbhijeetGodbole. Design Description. This design explains how sensor outputs can be
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.