Analog Electronic Filters ANALOGCIRCUITSANDSIGNALPROCESSING SeriesEditors: Mohammed Ismail.TheOhioStateUniversity Mohamad Sawan.ÉcolePolytechniquedeMontréal Forfurthervolumes: www.springer.com/series/7381 Hercules G. Dimopoulos Analog Electronic Filters Theory, Design and Synthesis Dr.HerculesG.Dimopoulos DepartmentElectronics Technol.Educ.Inst.ofPiraeus(T.E.I.) P.Ralli&Thivon250 Egaleo12244 Greece [email protected] SeriesEditors: MohammedIsmail MohamadSawan 205DreeseLaboratory ElectricalEngineeringDepartment DepartmentofElectricalEngineering ÉcolePolytechniquedeMontréal TheOhioStateUniversity Montréal,QC,Canada 2015NeilAvenue Columbus,OH43210,USA ISBN978-94-007-2189-0 e-ISBN978-94-007-2190-6 DOI10.1007/978-94-007-2190-6 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2011938013 ©SpringerScience+BusinessMediaB.V.2012 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Coverdesign:VTeXUAB,Lithuania Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) TomybelovedwifeKalliopeforheraffection, patienceandwisdom Preface Filters are essential subsystems in a huge variety of electronic systems. Filter ap- plicationsareinnumerable;theyareusedfornoisereduction,demodulation,signal detection, multiplexing, sampling, sound and speech processing, transmission line equalizationandimageprocessing,tonamejustafew.Inpractice,noelectronicsys- temcanexistwithoutfilters.Theycanbefoundineverythingfrompowersupplies to mobile phones and hard disk drives and from loudspeakers and MP3 players to homecinemasystemsandbroadbandInternetconnections. Thistextbookintroducesbasicconceptsandmethodsandtheassociatedmathe- maticalandcomputationaltoolsemployedinelectronicfiltertheory,synthesisand design.Sincetheapproximationproblemmustbesolvedbeforeafiltercanbede- signed,asignificantpartofthebookisconcernedwithapproximationsinamanner thatallowsdeepunderstandingandeasygeneralization.Theapproximationproce- dureusesthefilterspecificationstoderiveacircuitfunction,fromwhichtheelec- tronicfiltercircuitcanthenbesynthesized.Thesynthesismethodtobeusedinorder toderiveanelectroniccircuitfromamathematicalcircuitfunctiondependsonthe technologywhichistobeemployedforthefinalimplementationofthefilter.Syn- thesismethodsarethereforedependentonthetechnologiescurrentlyavailableand changeastechnologyevolves.Inthisbook,synthesismethodshavebeenrestricted totheclassicalpassiveandactive-RCcases,whichareexcellentrobustparadigms withhighdidacticvalue.MorerecenttechnologieslikeOTA-C,log-domain,current conveyorsbasedcircuitsandsoonarenotpresentedastheyareoverlyspecialized forageneralfiltertextbookwhichisaimedmainlyatsupportingstudentsofunder- graduatefiltercourses. Mostofthematerialofthebookcanbetaughtaspartofundergraduatecourses onfilters.Chapter1isageneralintroductiontofilterconceptsanddesignmethods andprovidesabasicbackgroundtotheseaswellasthecommonlanguageforfilter synthesisanddesign.Chapter2dealswiththeclassicalpolynomialapproximations (ButterworthandChebyshev)thatleadtoall-polelowpasstransferfunctionswithout zeros.ItalsointroducestherecentlydocumentedPascalapproximation.InChap.3, rationalapproximationsarepresented.Rationalapproximations,suchastheinverse Chebyshev,leadtolowpasstransferfunctionswithjω-axiszerosandgainoratten- uationrippleinthestopband.Chapter4isexclusivelydevotedtoaspecialrational approximation,theellipticapproximation,notonlyforitsimportance,butalsobe- causeithasnotbeengiventhefullattentionitdeservesintheliteratureduetothe vii viii Preface complicated mathematics involved. In this chapter, all mathematical formulae are providedandthecorrespondingcomputationaltoolsareexplicitlypresented. Chapters2–4applytolowpassfilters.Chapter5presentsthetransformationsthat canbeusedforothertypesoffilters,i.e.highpass,bandpassandband-rejectfilters. Chapter6providesanintroductiontopassivefilters,whiletheactualdesignofsuch filtersisdealtwithinChap.7.Theactive-RCsimulationofpassiveladderfiltersis presentedinChap.8. Operational amplifiers and first and second order circuits are presented in Chaps. 9 and 10, while in Chap. 11 some specific filter synthesis mathematics is presented.Finally,Chap.12coversthesynthesisofRLCMone-portcircuits,used extensivelyinpassivefilterdesign. Iwouldliketoexpressmygratitudetolaboratorystaff,Dr.ElenaSarriandMr. MakisZigirisfortheirhelpinpreparingthemanuscriptandfordrawingmostofthe figures.SpecialthanksareduetoMr.MiltosPoulizosforhisassistanceindrawing partofthefigures.Finally,Iwouldliketothankallmyfriendsandcolleaguesfor encouragingmetowritethistextbookandforallofthestimulatingdiscussionswe havehadduringtheprocess. Athens,Greece HerculesG.Dimopoulos Contents 1 IntroductiontoFilterConcepts . . . . . . . . . . . . . . . . . . . . . 1 1.1 GainandAttenuationFunctions . . . . . . . . . . . . . . . . . . . 1 1.2 IdealTransmission . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 IdealFilters . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 RealElectronicFilters . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 RealizableLowpassFilters . . . . . . . . . . . . . . . . . 8 1.3.2 RealizableHighpass(HP)Filters . . . . . . . . . . . . . . 10 1.3.3 RealizableBandpass(BP)Filters . . . . . . . . . . . . . . 11 1.3.4 RealizableBand-Reject(BR)Filters . . . . . . . . . . . . 11 1.4 FilterTechnologies. . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 DesigningaFilter . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.1 ScalingandNormalization:SmartSimplification . . . . . . 17 1.5.2 Approximation:TheHeartofFilterDesign . . . . . . . . . 18 1.6 ScalingandNormalization. . . . . . . . . . . . . . . . . . . . . . 22 1.6.1 ImpedanceScaling . . . . . . . . . . . . . . . . . . . . . . 23 1.6.2 FrequencyScaling . . . . . . . . . . . . . . . . . . . . . . 24 1.6.3 FullNormalization . . . . . . . . . . . . . . . . . . . . . . 25 1.6.4 PrototypeFilters . . . . . . . . . . . . . . . . . . . . . . . 29 1.7 CircuitOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 All-PoleApproximations . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 FilterSpecificationsandApproximations . . . . . . . . . . . . . . 37 2.1.1 All-PoleTransferFunctionsandApproximations . . . . . . 39 2.2 TheButterworthApproximation. . . . . . . . . . . . . . . . . . . 41 2.2.1 OptimizationUsingβ asaDesignParameter . . . . . . . . 44 2.2.2 The3dBFrequencyofButterworthFilters . . . . . . . . . 46 2.2.3 TheCut-offRate . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.4 TheNormalizedButterworthLowpassTransferFunction . 49 2.2.5 TableofPrototypeButterworthFilters . . . . . . . . . . . 53 2.3 TheChebyshevApproximation . . . . . . . . . . . . . . . . . . . 59 2.3.1 ChebyshevPolynomials . . . . . . . . . . . . . . . . . . . 60 ix x Contents 2.3.2 TheAll-PoleChebyshevApproximation . . . . . . . . . . 61 2.3.3 The3-dBFrequencyandTheCut-offRate . . . . . . . . . 70 2.3.4 TheTransferFunction . . . . . . . . . . . . . . . . . . . . 71 2.4 ThePascalApproximation. . . . . . . . . . . . . . . . . . . . . . 77 2.4.1 OptimizingthePascalApproximation. . . . . . . . . . . . 84 2.4.2 OrderCalculation . . . . . . . . . . . . . . . . . . . . . . 86 2.4.3 TheTransferFunction . . . . . . . . . . . . . . . . . . . . 86 2.4.4 DesignExamples . . . . . . . . . . . . . . . . . . . . . . 88 2.4.5 ComparisontoOtherPolynomialApproximations . . . . . 91 2.5 ChebyshevandPascalDesignTables . . . . . . . . . . . . . . . . 94 2.5.1 Table:ChebyshevApproximation . . . . . . . . . . . . . . 94 2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3 RationalApproximations . . . . . . . . . . . . . . . . . . . . . . . . 103 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2 RationalApproximations . . . . . . . . . . . . . . . . . . . . . . 104 3.3 TheInverseChebyshevApproximation . . . . . . . . . . . . . . . 110 3.3.1 GainAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 113 3.3.2 RippleFactorandOrderCalculation . . . . . . . . . . . . 116 3.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.4 TheInversePascalApproximation . . . . . . . . . . . . . . . . . 130 3.4.1 ThePascalRationalFunctionF (Ω) . . . . . . . . . . . . 134 P 3.4.2 DefinitionoftheInversePascalApproximation. . . . . . . 137 3.4.3 GainAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 139 3.4.4 FilterDesignUsingtheInversePascalApproximation . . . 139 3.4.5 TheOrderInequalityandtheOrderNomograph . . . . . . 141 3.4.6 TheTransferFunctionoftheInversePascalFilters . . . . . 146 3.5 InversePascalTables . . . . . . . . . . . . . . . . . . . . . . . . 153 3.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4 TheElliptic(Cauer)Approximation . . . . . . . . . . . . . . . . . . 165 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2 CalculationofK(x)andsn(u,x) . . . . . . . . . . . . . . . . . . 169 4.2.1 TheAGMandtheCompleteEllipticIntegralK(x) . . . . . 170 4.2.2 TheJacobiNomeq (ModularConstant) . . . . . . . . . . 170 4.2.3 ThetaFunctionsandtheJacobiEllipticSinesn(u,x) . . . . 171 4.3 TheEllipticApproximationandtheEllipticRationalFunction . . . 172 4.4 PropertiesoftheEllipticRationalFunctionR (Ω ,Ω) . . . . . . 173 N S 4.5 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 4.6 SpecificationsandtheOrderoftheEllipticApproximation. . . . . 180 4.7 EllipticFilterDesignOptimization . . . . . . . . . . . . . . . . . 184 4.7.1 StopbandOptimizationΩ . . . . . . . . . . . . . . . 187 Smax 4.8 TheTransferFunction . . . . . . . . . . . . . . . . . . . . . . . . 190 4.9 EllipticFilterDesignAids . . . . . . . . . . . . . . . . . . . . . . 204
Description: