ebook img

Analog and Digital Signal Processing PDF

821 Pages·2016·17.15 MB·Tagalog
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analog and Digital Signal Processing

Ambardar frontmatter 12/5/98 10:21 AM Page 2 Analog and Digital Signal Processing Second Edition Ashok Ambardar Michigan Technological University Brooks/Cole Publishing Company ®An International Thomson Publishing Company Pacific Grove • Albany • Belmont • Bonn • Boston • Cincinnati • Detroit • Johannesburg • London Madrid • Melbourne • Mexico City • New York • Paris • Singapore • Tokyo • Toronto • Wahington CONTENTS LIST OF TABLES xi PREFACE xiii FROM THE PREFACE TO THE FIRST EDITION xv 1 OVERVIEW 1 1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 From Concept to Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 ANALOG SIGNALS 8 2.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Operations on Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Signal Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Harmonic Signals and Sinusoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Commonly Encountered Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 The Impulse Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 The Doublet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.8 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 DISCRETE SIGNALS 39 3.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 Discrete Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Operations on Discrete Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Decimation and Interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Common Discrete Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Discrete-Time Harmonics and Sinusoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.6 Aliasing and the Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.7 Random Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 v vi Contents 4 ANALOG SYSTEMS 68 4.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2 System Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Analysis of LTI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 LTI Systems Described by Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5 The Impulse Response of LTI Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6 System Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.7 Application-Oriented Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 DISCRETE-TIME SYSTEMS 96 5.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1 Discrete-Time Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2 System Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3 Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.4 Digital Filters Described by Difference Equations . . . . . . . . . . . . . . . . . . . . . . . . 103 5.5 Impulse Response of Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.6 Stability of Discrete-Time LTI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.7 Connections: System Representation in Various Forms . . . . . . . . . . . . . . . . . . . . . 116 5.8 Application-Oriented Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6 CONTINUOUS CONVOLUTION 130 6.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.2 Convolution of Some Common Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.3 Some Properties of Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.4 Convolution by Ranges (Graphical Convolution) . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.5 Stability and Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.6 The Response to Periodic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.7 Periodic Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.8 Connections: Convolution and Transform Methods. . . . . . . . . . . . . . . . . . . . . . . . 151 6.9 Convolution Properties Based on Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.10 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7 DISCRETE CONVOLUTION 169 7.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.1 Discrete Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.2 Convolution Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.3 Convolution of Finite Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.4 Stability and Causality of LTI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.5 System Response to Periodic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Contents vii 7.6 Periodic Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.7 Connections: Discrete Convolution and Transform Methods. . . . . . . . . . . . . . . . . . . 183 7.8 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.9 Discrete Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8 FOURIER SERIES 197 8.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.1 Fourier Series: A First Look . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.2 Simplifications Through Signal Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.3 Parseval’s Relation and the Power in Periodic Signals . . . . . . . . . . . . . . . . . . . . . . 205 8.4 The Spectrum of Periodic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.5 Properties of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.6 Signal Reconstruction and the Gibbs Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 8.7 System Response to Periodic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 8.8 Application-Oriented Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 8.9 The Dirichlet Kernel and the Gibbs Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 8.10 The Fourier Series, Orthogonality, and Least Squares . . . . . . . . . . . . . . . . . . . . . . 230 8.11 Existence, Convergence, and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 8.12 A Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 9 THE FOURIER TRANSFORM 248 9.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 9.2 Fourier Transform Pairs and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 9.3 System Analysis Using the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 271 9.4 Frequency Response of Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 9.5 Energy and Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 9.6 Time-Bandwidth Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 10 MODULATION 300 10.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 10.1 Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 10.2 Single-Sideband AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 10.3 Angle Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 10.4 Wideband Angle Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 10.5 Demodulation of FM Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 10.6 The Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 11 THE LAPLACE TRANSFORM 330 11.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 11.1 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 viii Contents 11.2 Properties of the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 11.3 Poles and Zeros of the Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 11.4 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 11.5 The s-Plane and BIBO Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 11.6 The Laplace Transform and System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 11.7 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 12 APPLICATIONS OF THE LAPLACE TRANSFORM 367 12.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 12.1 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 12.2 Minimum-Phase Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 12.3 Bode Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 12.4 Performance Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 12.5 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 12.6 Application of Feedback: The Phase-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . 387 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 13 ANALOG FILTERS 398 13.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 13.2 The Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 13.3 The Butterworth Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 13.4 The Chebyshev Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 13.5 The Inverse Chebyshev Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 13.6 The Elliptic Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 13.7 The Bessel Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 14 SAMPLING AND QUANTIZATION 446 14.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 14.1 Ideal Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 14.2 Sampling, Interpolation, and Signal Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 14.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 14.4 Digital Processing of Analog Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 14.5 Compact Disc Digital Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 14.6 Dynamic Range Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 15 THE DISCRETE-TIME FOURIER TRANSFORM 482 15.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 15.1 The Discrete-Time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 15.2 Connections: The DTFT and the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 483 15.3 Properties of the DTFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Contents ix 15.4 The Transfer Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 15.5 System Analysis Using the DTFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 15.6 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 15.7 Ideal Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 15.8 Some Traditional and Non-traditional Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 15.9 Frequency Response of Discrete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 15.10 Oversampling and Sampling Rate Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520 16 THE DFT AND FFT 535 16.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 16.2 Properties of the DFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 16.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 16.4 Approximating the DTFT by the DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 16.5 The DFT of Periodic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 16.6 The DFT of Nonperiodic Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 16.7 Spectral Smoothing by Time Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 16.8 Applications in Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 16.9 Spectrum Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 16.10 Matrix Formulation of the DFT and IDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 16.11 The FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 16.12 Why Equal Lengths for the DFT and IDFT? . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 17 THE z-TRANSFORM 592 17.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 17.1 The Two-Sided z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 17.2 Properties of the z-Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 17.3 Poles, Zeros, and the z-Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 17.4 The Transfer Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 17.5 The Inverse z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 17.6 The One-Sided z-Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613 17.7 The z-Transform and System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618 17.8 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 17.9 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 18 APPLICATIONS OF THE z-TRANSFORM 637 18.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 18.1 Transfer Function Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 18.2 Interconnected Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 18.3 Minimum-Phase Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 18.4 The Frequency Response: A Graphical Interpretation . . . . . . . . . . . . . . . . . . . . . . 645 x Contents 18.5 Application-Oriented Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649 18.6 Allpass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658 18.7 Application-Oriented Examples: Digital Audio Effects . . . . . . . . . . . . . . . . . . . . . . 660 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 19 IIR DIGITAL FILTERS 673 19.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 19.2 IIR Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 19.3 Response Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676 19.4 The Matched z-Transform for Factored Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 684 19.5 Mappings from Discrete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 19.6 The Bilinear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 19.7 Spectral Transformations for IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 19.8 Design Recipe for IIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707 20 FIR DIGITAL FILTERS 715 20.0 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 20.1 Symmetric Sequences and Linear Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 20.2 Window-Based Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720 20.3 Half-Band FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733 20.4 FIR Filter Design by Frequency Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 20.5 Design of Optimal Linear-Phase FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 20.6 Application: Multistage Interpolation and Decimation . . . . . . . . . . . . . . . . . . . . . . 744 20.7 Maximally Flat FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748 20.8 FIR Differentiators and Hilbert Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 20.9 Least Squares and Adaptive Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 751 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 21 MATLAB EXAMPLES 762 21.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 21.1 The ADSP Toolbox and Its Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 21.2 Matlab Tips and Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 21.3 Graphical User Interface Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 21.4 The ADSP Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766 21.5 Examples of Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 REFERENCES 798 INDEX 801 LIST OF TABLES Table1.1 Response of an RC Lowpass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Table4.1 Form of the Natural Response for Analog LTI Systems . . . . . . . . . . . . . . . . . . . 77 Table4.2 Form of the Forced Response for Analog LTI Systems . . . . . . . . . . . . . . . . . . . . 77 Table5.1 Form of the Natural Response for Discrete LTI Systems. . . . . . . . . . . . . . . . . . . 105 Table5.2 Form of the Forced Response for Discrete LTI Systems . . . . . . . . . . . . . . . . . . . 105 Table8.1 Some Common Spectral Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Table8.2 Smoothing by Operations on the Partial Sum . . . . . . . . . . . . . . . . . . . . . . . . 228 Table9.1 Some Useful Fourier Transform Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Table9.2 Operational Properties of the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 254 Table10.1 Some Useful Hilbert Transform Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Table11.1 A Short Table of Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 Table11.2 Operational Properties of the Laplace Transform. . . . . . . . . . . . . . . . . . . . . . . 333 Table11.3 Inverse Laplace Transform of Partial Fraction Expansion Terms . . . . . . . . . . . . . . 342 Table12.1 Time Domain Performance Measures for Real Filters . . . . . . . . . . . . . . . . . . . . 379 Table13.1 3-dB Butterworth Lowpass Prototype Transfer Functions . . . . . . . . . . . . . . . . . . 408 Table13.2 Bessel Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 Table14.1 Various Number Representations for B =3 Bits . . . . . . . . . . . . . . . . . . . . . . . 461 Table15.1 Some Useful DTFT Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 Table15.2 Properties of the DTFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Table15.3 Relating the DTFT and Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 Table15.4 Connections Between Various Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 Table15.5 Discrete Algorithms and their Frequency Response . . . . . . . . . . . . . . . . . . . . . 513 Table16.1 Properties of the N-Sample DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 Table16.2 Relating Frequency Domain Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 Table16.3 Some Commonly Used N-Point DFT Windows. . . . . . . . . . . . . . . . . . . . . . . . 558 Table16.4 Symmetry and Periodicity of W =exp( j2π/N) . . . . . . . . . . . . . . . . . . . . . . 571 N − Table16.5 FFT Algorithms for Computing the DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 Table16.6 Computational Cost of the DFT and FFT . . . . . . . . . . . . . . . . . . . . . . . . . . 577 xi xii List of Tables Table17.1 A Short Table of z-Transform Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 Table17.2 Properties of the Two-Sided z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 Table17.3 Inverse z-Transform of Partial Fraction Expansion (PFE) Terms . . . . . . . . . . . . . . 609 Table17.4 Properties Unique to the One-Sided z-Transform . . . . . . . . . . . . . . . . . . . . . . . 613 Table19.1 Impulse-Invariant Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 Table19.2 Numerical Difference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 Table19.3 Numerical Integration Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688 Table19.4 Digital-to-Digital (D2D) Frequency Transformations. . . . . . . . . . . . . . . . . . . . . 695 Table19.5 Direct Analog-to-Digital (A2D) Transformations for Bilinear Design . . . . . . . . . . . . 697 Table20.1 Applications of Symmetric Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 Table20.2 Some Windows for FIR Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 Table20.3 Characteristics of Harris Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 Table20.4 Characteristics of the Windowed Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 727 PREFACE In keeping with the goals of the first edition, this second edition of Analog and Digital Signal Processing is geared to junior and senior electrical engineering students and stresses the fundamental principles and applications of signals, systems, transforms, and filters. The premise is to help the student think clearly in both the time domain and the frequency domain and switch from one to the other with relative ease. The text assumes familiarity with elementary calculus, complex numbers, and basic circuit analysis. This edition has undergone extensive revision and refinement, in response to reviewer comments and to suggestions from users of the first edition (including students). Major changes include the following: 1. At the suggestion of some reviewers, the chapters have been reorganized. Specifically, continuous and discreteaspects(thatwerepreviouslycoveredtogetherinthefirstfewchapters)nowappearinseparate chapters. This should allow instructors easier access to either sequential or parallel coverage of analog and discrete signals and systems. 2. The material in each chapter has been pruned and streamlined to make the book more suited as a textbook. We highlight the most important concepts and problem-solving methods in each chapter by including boxed review panels. The review panels are reinforced by discussions and worked examples. Many new figures have been added to help the student grasp and visualize critical concepts. 3. Newapplication-orientedmaterialhasbeen added tomanychapters. Thematerialfocusesonhowthe theory developed in the text finds applications in diverse fields such as audio signal processing, digital audio special effects, echo cancellation, spectrum estimation, and the like. 4. Many worked examples in each chapter have been revised and new ones added to reinforce and extend key concepts. Problems at the end of each chapter are now organized into “Drill and Reinforcement”, “Review and Exploration”, and “Computation and Design” and include a substantial number of new problems. The computation and design problems, in particular, should help students appreciate the application of theoretical principles and guide instructors in developing projects suited to their own needs. 5. The Matlab-based software supplied with the book has been revised and expanded. All the routines have been upgraded to run on the latest version (currently, v5) of both the professional edition and student edition of Matlab, while maintaining downward compatibility with earlier versions. 6. TheMatlabappendices(previouslyattheendofeachchapter)havebeenconsolidatedintoaseparate chapter and substantially revamped. This has allowed us to present integrated application-oriented examples spanning across chapters in order to help the student grasp important signal-processing concepts quickly and effectively. Clear examples of Matlab code based on native Matlab routines, as well as the supplied routines, are included to help accelerate the learning of Matlab syntax. xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.