Mon.Not.R.Astron.Soc.000,1–14(2013) Printed20June2014 (MNLATEXstylefilev2.2) An uncertainty principle for star formation. I. Why galactic star formation relations break down below a certain spatial scale 4 1 2 1 J. M. Diederik Kruijssen and Steven N. Longmore 0 1Max-PlanckInstitutfu¨rAstrophysik,Karl-Schwarzschild-Straße1,85748Garching,Germany;[email protected] 2 2AstrophysicsResearchInstitute,LiverpoolJohnMooresUniversity,IC2,LiverpoolSciencePark,146BrownlowHill,LiverpoolL35RF,UnitedKingdom n a J Accepted2014January15.Received2013November8;inoriginalform2013July9. 7 1 ABSTRACT ] Galacticscalingrelationsbetweenthe(surfacedensitiesof)thegasmassandthestarforma- A tion(SF)rateareknowntodevelopsubstantialscatterorevenchangeformwhenconsidered G belowacertainspatialscale.We quantifyhowthisbehaviourshouldbeexpectedduetothe . incompletestatisticalsamplingofindependentstar-formingregions.Otherincludedlimiting h factorsaretheincompletesamplingofSFtracersfromthestellarinitialmassfunctionandthe p spatialdriftbetweengasandstars.WepresentasimpleuncertaintyprincipleforSF,whichcan - o beusedtopredictandinterpretthefailureofgalacticSFrelationsonsmallspatialscales.This r uncertaintyprincipleexplainshowthescatterofSFrelationsdependsonthespatialscaleand t s predictsascale-dependentbiasofthegasdepletiontime-scalewhencenteringanapertureon a gasorSFtracerpeaks.Weshowhowthescatterandbiasaresensitivetothephysicalsizeand [ time-scalesinvolvedintheSFprocess(suchasitsdurationorthemolecularcloudlifetime), 1 andillustratehowourformalismprovidesapowerfultooltoconstraintheselargelyunknown v quantities.Thankstoitsgeneralform,theuncertaintyprinciplecanalsobeappliedtootheras- 9 trophysicalsystems,e.g.addressingthetime-evolutionofstar-formingcores,protoplanetary 5 discs,orgalaxiesandtheirnuclei. 4 4 Keywords: galaxies:evolution—galaxies:ISM—galaxies:stellarcontent—ISM:evolu- . tion—stars:formation 1 0 4 1 v: 1 INTRODUCTION numberofidealisedexamples.Weshowthatitaccuratelydescribes i theobservedrangeofspatialscalesonwhichtheSFrelationscan X Galactic star formation (SF) relations (e.g. Silk 1997; Kennicutt beapplied,aswellastheirscatterandbiasonsmallerscales.Itis 1998; Elmegreen 2002; Bigieletal. 2011) break down below a r alsoshown how theuncertainty principlecan beused toderivea a certain spatial scale (Schrubaetal. 2010; Onoderaetal. 2010; numberoffundamentalcharacteristicsoftheSFprocess.Wevali- Liuetal. 2011). This failure of SF relations to describe small datethemethodusingMonte-Carlomodelsofstar-formingregions scalesmaypotentiallyprovideabetterunderstanding of galactic- in galaxies. In a follow-up paper (Kruijssenetal. 2014, hereafter scale SF than the relations themselves do (e.g. Blancetal. 2009; K14),weapplytheuncertaintyprincipletoobservationaldata. Schrubaetal.2010;Calzetti,Liu&Koda2012;Leroyetal.2012, Athttp://www.mpa-garching.mpg.de/KL14principle,wehave 2013). madeFortranandIDLmodulesforapplyingtheuncertaintyprin- SFrelationsshouldbeexpectedtobreakdownatsomepoint– ciplepubliclyavailable.Achecklistdetailingtherequiredstepsfor theyrelatethegasandradiationpropertiesoftheSFprocess,which theirobservationalapplicationissuppliedinAppendixA. onsomescaleshouldnolongercorrelatebecausetheycoversubse- quentphasesofSF.Forinstance,agas-free,youngstellarclusteris detectableinSFtracerssuchasHαorUVemission,butnotinthe gastracersthatwerelikelyvisibleatanearlierstage.Thisexample 2 ANUNCERTAINTYPRINCIPLEFORSTAR canbeexpressedintermsofthestatisticalsamplingoftheSFpro- FORMATION cess–galacticSFrelationsaverageoverallphasesandimplicitly 2.1 Thegeneraluncertaintyprinciple assumethateachphaseisstatisticallywell-sampled. Inthispaper,wepresentasimpleuncertaintyprinciplethatis WeadoptthehypothesisthatSFrelationsonlyapplyabovecertain similarinformtothefamouscriterionofHeisenberg(1927).Itcan spatialscalesbecauseonsmallerscalesthedifferentphasesofthe be used to identify the spatial scale on which SF relations break SFprocessarestatisticallynotwell-sampled.Thismayleadtothe down due to the incomplete sampling of the SF process, as well perception of episodicity or a deviation from these SF relations: as to quantify the resulting scatter around and bias of such rela- givenanensembleofstar-formingregions,certainpermutationsof tions.Afterintroducingourframework,weillustrateitsusewitha theirstateswillleadtoSFRshigherorlowerthanpredictedbySF 2 J. M. D.Kruijssen& S.N. Longmore relations.Forinstance,ifallregionsintheensemblehappentobe thatissampledwithinatwo-dimensionalapertureofdiameter∆x onthevergeofinitiatingSF,theywillhaveverylowSFRsfortheir isN =(∆x/λ)2.Theconditionthatthisnumberexceedsthe indep gas masses in comparison to the galactic average. The appropri- numberofindependentregionsrequiredtoretrievethegalacticSF ate sampling of the phases of the SF process can be achieved by relation(N >N )thusyields: indep indep,req increasingthesampleofstates,orbysomehowfollowingthedif- ferentphasesintime.Ifawell-sampledSFrelationisachievedby ∆x 2 > τ . (3) coveringalargeareaorvolume,thisimpliesthatthesize-scale∆x λ ∆t (cid:16) (cid:17) onwhichtheSFrelationisevaluatedshouldsatisfy: Thiscanberewritteninthefamiliarformofanuncertaintyprinci- plethatneedstobesatisfiedforgalacticSFrelationstohold: ∆x>Aλ, (1) where A and λ represent a dimensionless constant and a length- ∆x∆t1/2>λτ1/2. (4) scale,respectively,bothofwhicharespecifiedbelow. Here, ∆x isthe spatial scale on which the SFrelations are mea- Thefactthatasinglestar-formingregionisobservedataspe- suredand∆tisthedurationoftheshortestphaseoftheSFprocess cifictimeimpliesthatthatregionbyitselfcannotsatisfygalacticSF thatistracedbytheSFrelationinquestion.Ifequation(4)issat- relations.However,ifitwerefollowedintimeforthefullduration isfied,thentheshortestphaseoftheSFprocessisexpectedtobe of theSFprocess τ such thatall ‘relevant’ phases(i.e.thosethat well-sampled (modulo Poisson noise), and hence the galactic SF aretracedingalacticSFrelations)oftheSFprocessarecovered, relationisretrieved. Giventhevaluesof allt ,thisdefinesthe thenthetime-averagedpropertiesoftheregionshouldbeconsistent ph,i minimumsize-scale: withthegalacticSFrelations–providedthatthephysicsofSFare universal.Specifically,toretrievetheSFrelationforasinglestar- τ 1/2 formingregion,werequirethetime-scaleoverwhichtheproperties ∆x>∆xsamp ≡ ∆t λ, (5) oftheregionareaveragedtocoveratleastthetimeτ coveringall (cid:16) (cid:17) whichspecifiestheconstantAinequation(1).Hence,(1)themore phasesoftheSFprocesstracedingalacticSFrelations.Observa- similarthevarioust areor(2)thesmallerthesizeisofinde- tionally,thisconditioncanneverbesatisfied–wecannotobserve ph,i pendent regions, the smaller the minimum size-scaleis on which astellarclusteranditsprogenitor cloudatthesametime.Thisis galacticSFrelationsstillhold. whygalacticSFrelationsmustconsiderspatialscaleslargeenough Next to the statistical sampling in time and space of the tocovermultiplestar-formingregions. full SF process, additional scatter is introduced by the incom- Observationally,eachphaseoftheSFprocessisprobedwitha plete sampling of the SF tracer at low SFRs (Leeetal. 2011; differenttracer(e.g.COformoleculargas,HαforSF).Theemis- Fumagalli,daSilva&Krumholz2011).Observationalestimatesof sion from these tracers is observable for some fraction of the to- the SFR almost exclusively rely on emission from massive stars, talSFprocess,althoughanindividualobservationonlyretrievesa which statistically may not be produced at low SFRs, leading to snapshotatadiscretemomentintime.ThedetectionofagasorSF tracerdoesnotdistinguishatwhichtimealongthephaseprobedby anunderestimationoftheSFR.IfwedefineaminimumSFRmin abovewhichacertainSFtracerarisesfromanadequatelysampled thattraceritisobserved.Forinstance,thegasmassthatwilleven- tuallyparticipateintheSFprocessisvisibleforacertainduration IMF(seeTable1),agivenSFRsurfacedensityΣSFR impliesthat aspatialscaleof andcan bedetectedthroughout. If wenow consider anensemble opfrosctaers-sf,otrhmeiknegyrceogniosneqsuaetnrcaendisomthlaytadigsatrliabcutitcedStFimreelsatailoonncgatnheonSlFy ∆x>∆xIMF ≡ 4SFRmin 1/2 (6) π ΣSFR be retrieved if the shortest phase of theSF process issampled at (cid:16) (cid:17) leastonce.Inother words,thephase withtheshortest durationis isrequiredtoretrieveareliableSFRestimate.Here,thefactorof thelimitingfactorinwhetherornotthegalacticSFrelationisre- fourentersbecause∆xrepresentsadiameterratherthanaradius. trieved.WedefinethedurationoftheSFprocessas Finally,theabovelimitsonthespatialscaleonwhichgalactic SFrelationsholdonlyapplyiftherelativefluxofgasandSFtracers N N−1 acrosstheboundaryofanapertureisnegligibleoverthedurationof τ = tph,i− tover,i,i+1, (2) theSFprocessτ.Anynetdriftwillintroducescatterorpotentially Xi=1 Xi=1 systematic deviations. Given a characteristic drift velocity σ, the where tph,i is the duration of phase i and tover,i,i+1 represents size-scaleshouldthereforesatisfy theduration of theoverlap between phasesiand i+1. Defining 1 ∆t ≡ min(tph,i) asthe shortest phase of theSF process that is ∆x>∆xdrift≡ στ, (7) 2 tracedingalacticSFrelations,theratioτ/∆tthenreflectsthenum- berofindependentstar-formingregionsNindep,reqthatneedtobe wherethefactor of 1/2 arisesfromtakingtheexpected timedif- sampledinordertoretrievethestatisticallyconverged,galacticSF ferencebetweentworegionspositionedatrandomtimesduringthe relation.Weillustratethisresultwithanexample. IftheSFwere gas and stellar phases. In practice, the condition of equation (5) toconsistoftwophasessuchthattph,1/tph,2 =9(i.e.90percent impliesthatmultipleindependentstar-formingregionsarecovered of the time is spent in the first, e.g. molecular gas, phase), then inasingleaperture.Statisticallyspeaking, thefluxofgasandSF ∆t/τ =0.1andhenceNindep,req =10independentstar-forming tracersacrosstheapertureboundaryisthereforemuchsmallerthan regionsneedtobecoveredtoretrievethegalacticSFrelation. acrossindividualstar-formingregionsandequation(7)shouldtyp- Thesizeofan‘independent’regionreferstothelargestspatial icallybesatisfied.Thiswillbeillustratedin§3below. scaleonwhichSFeventswithinthatregionarecorrelated,e.g.by Together,theabovethreeconditionspostulatethatgalacticSF theglobalgravitationalcollapseofamolecularcloud,triggeredSF, relationsholdonsize-scales or a galaxy-scale perturbation such as a merger. The number of independentstar-formingregionswithacharacteristicseparationλ ∆x>∆xmax≡max{∆xsamp,∆xIMF,∆xdrift}. (8) An uncertaintyprincipleforstarformation 3 Table1.Examplestarformationtracerproperties Tracer ∆t50%a ∆t95%a htiluma SFRmin (Myr) (Myr) (Myr) (10−3M⊙yr−1) Hα 1.7 4.7 2 1b FUV 4.8 65 14 0.04c aFromLeroyetal.(2012).bFromKennicutt&Evans(2012). cAssumingaFUVfluxcontributionfromstarsM >3M⊙. belowaregeneralisedanddonotdependonthedetailedintensity Figure1.Schematicrepresentationoftgas,tstar,tover andτ.Depending evolutionofthegasandSFtracers.Theoverlapcanonlybeignored ontheadoptedgasandSFtracers(andtheirdetectability), tover canrefer if(1)itsdurationismuchshorterthanthatoftheindividualgasand tothedurationofSFitself,thedurationofgasremoval,oracombination SF tracers and (2) multiple independent star-forming regions are ofboth(seetext). coveredintheaperture.Weillustratetheeffectofanon-zeroover- lapin§3. For two popular SF tracers, Table 1 shows times at which 2.2 Specificationofkeyvariables 50and95percentofthetotalfluxhasbeenemittedforatypical Thegeneral uncertainty principleof equation(8)should besatis- stellarpopulation(seeLeroyetal.2012),aswellastheluminosity- fiedwhenevaluatinggalacticSFrelations,irrespectiveofthepre- weighted durations hti of each tracer and the minimum SFR lum cisechoice ofthevariables itdepends on. However, thepractical requiredforadequately samplingthetracedstarsfromastandard applicationoftheprinciplerequiresthespecificationofthe(tracer- Chabrier(2003)IMF.Fortheapplicationsbelow,wesettstarequal dependent)durationsoftheseveralphasesoftheSFprocesst , to the luminosity-weighted duration, although in practice other ph,i theminimumSFRsrequiredfortheiruseSFRmin,thetotaldura- choicesmay bemoreappropriate depending on theobservational tionoftheSFprocessτ,andthecharacteristicspatialseparationof sensitivitylimits. independentstar-formingregionsλ.Notethatthenumbersinthis Thedurationofthegasphaseisnotwell-constrained,andde- sectionarestrictlyadoptedforthepurposeofillustration.Inprac- pendsonthespecificgastraceraswellasthegalacticenvironment. tice,theycanbemeasuredfromtheobservationaldata(see§3and IfamoleculargastracerisusedinaMilkyWay-likegalaxy,aplau- §4.3). sibledurationofitsdetectabilityisthedynamicaltime-scaleofthe Intherestofthispaper,weillustratetheuseofouruncertainty host galaxy, whichsetsthetimeinterval betweenexternal pertur- principlebyassumingthattheSFprocessastracedbygalacticscal- bationssuch ascloud-cloud collisionsor spiralarmpassages. By ingrelationsconsistsoftwosteps,asisshownschematicallyinFig- contrast, if a tracer of atomic gas is used, then the condensation ure1.Duringthefirstphase,thegastracercanbedetectedwhileno time-scaletothemolecularformenters.Inthefollowingexamples, SFisseen,whereasduringthesecondphase,ayoungstellarpopu- weassumetheuseofamoleculargastracer,andsettgas = Ω−1, lationisinplaceandthegashasbeenexpelledduetostellarfeed- where Ω ≡ V/R is the angular velocity at circular velocity V back(oranyothermechanismthatleadsthegasphasetobecome and galactocentric radius R. In galaxy discs in hydrostatic equi- undetectableintheadoptedgastracer).Thedurationoftheentire librium, this time-scale is similar to the free-fall time of GMCs SFprocessisthereforegivenbyτ =tgas+tstar−tover.Here,tgas (e.g. Krumholz&McKee 2005). However, equilibrium is not al- denotesthedurationofthefirstphase, i.e.thetimeforwhichthe wayssatisfied,andthereforeanalternativedefinitionwouldbeto gasisvisibleintheadoptedtracerbeforeenteringtheSFprocess, usethetypical observed free-fall timeof GMCs. Asshown in§3 includingpossibleinterruptions,tstarrepresentsthedurationofthe and§4.3,ouruncertaintyprinciplecanactuallybeusedtoempir- secondphase,andtover isthedurationoftheoverlapbetweenthe ically determine the time-scales during which gas tracers are de- gasandstellarphases.Asaresult,∆t = min{tgas,tstar},andin tectable. thefirstexamples weshall set tover = 0.Inreality, morephases In galactic discs, a good proxy for the typical separation of mayexistandinevitablytover 6=0(see§3.3). independent star-forming regions λ is the Toomre length, which ThemeaningoftoverdependsontheadoptedgasandSFtrac- foraflatrotationcurveisgivenby ers.IfadiagnosticisusedthattracesSFonlyintheunembedded πGΣ state(suchasHα),thentovermaybedominatedbythetimeittakes lT= Ω2 , (9) thestellarfeedbacktoremovethegasfromtheaperture(eitherbya whereΣisthegassurfacedensity.Substitutingtheaboveexpres- phasetransitionorbymotion).IfadiagnosticisusedthattracesSF sionsforτ andλinequation(5),wecanspecifythespatialscales fromtheonsetofSF,evenwhenitisstilldeeplyembedded(suchas abovewhichgalacticSFrelationsapplyduetothestatisticalsam- cmcontinuumoryoungstellarobjectcounts),thentoverreflectsthe plingofindependentstar-formingregions durationofSFitselfplusthetime-scaleforgasremoval.Inevitably, tthheeSpFretcriasceeornasnedttohfetthimeeo-veevrolaluptitohnenofdtehpeesntdasrfoonrmthaetisoennesiftfiivciietynctoy ∆xsamp = Ωm−1in+{Ωts−ta1r,t−sttaorv}er 1/2 πΩG2Σ, (10) (orfeedback). Forseveraloftheexamplesbelow,weassumethat (cid:18) (cid:19) andduetodrift duringtheoverlapthegasandSFtracersarestatisticallydetected at50percentoftheirnormalintensity,consistentwithalinearde- ∆xdrift= 1σ(Ω−1+tstar−tover), (11) crease(gas)orincrease(stars).Higher-orderfunctionalforms(e.g. 2 Burkert&Hartmann2012)arelikelymoreaccurate,butthesetypi- whereσisassumedtobethegasvelocitydispersionmeasuredon callyintroducecorrectionsofonlyafew10percent,whichjustifies the largest scale young stars are assumed to inherit the velocity theuseofalinearform.However,notethattheequationsprovided dispersion of their natal cloud). Equation (6) does not require to 4 J. M. D.Kruijssen& S.N. Longmore Table2.Adoptedpropertiesofidealisedgalaxiesandregions. Galaxy/ Σ Ω−2 σ ΣSFR tgas lT ∆xsamp ∆xIMF ∆xdrift ∆xmax region (M⊙pc−2) (100Myr)−1 (kms−1) (M⊙yr−1kpc−2) (Myr) (kpc) (kpc) (kpc) (kpc) (kpc) SN 10 2.6 7 0.0063 38 0.21 0.94 0.45 0.14 0.94 CMZ 120 85 35 0.20 1.2 0.0023 0.0039 0.080 0.057 0.08 Disc 15 4.0 10 0.011 25 0.13 0.49 0.34 0.14 0.49 Dwarf 10 3.0 10 0.0063 33 0.16 0.66 0.45 0.18 0.66 SMG 103 30 50 20 3.3 0.16 0.26 0.0080 0.14 0.26 Thesolarneighbourhood(SN)valuesarebasedonaflatVc = 220kms−1rotationcurveandtheWolfireetal.(2003)gasmodel;theCentral MolecularZone(CMZ)valuesaretakenfromKruijssenetal.(2013,230pc-averaged);thediscanddwarfgalaxyvaluesarebasedonLeroyetal. (2008);thesub-mmgalaxy(SMG)valuesarebasedonGenzeletal.(2010).ExceptfortheCMZandtheSMG,theSFRsurfacedensitiesassume aKennicutt(1998)SFrelation.Boldface∆xvaluesindicatethemaximaofequation(8).Inallcases,tstar =2Myrisadopted(seetext). be specified further. The above equations show that the gas sur- facedensityΣ,theSFRsurfacedensityΣSFR,therotationcurve, andthegasvelocitydispersionσ mustbeknowntoapplyourun- certaintyprincipleinthewayspecifiedhere.Galacticenvironments otherthandiscs(suchasgalaxymergers)mayrequiredifferentdef- initionsfortgas,τ andλ. 3 APPLICATIONTOIDEALISEDEXAMPLES 3.1 ThefailureofSFrelationsonsmallspatialscales We now illustrate the use of the uncertainty principle quantita- tivelywithanumberofarchetypicalgalacticenvironments,which are listed in Table 2 together with their characteristic properties andtheresulting∆x .Weconsiderthesolarneighbourhood(SN), i the Central Molecular Zone (CMZ) of the Milky Way, a ‘disc galaxy’, a ‘dwarf galaxy’, and a starbursting ‘sub-mm galaxy’ (SMG). Throughout this section, we will assume the use of Hα Figure2.Exampleoftheminimumsize-scales ∆xi abovewhichgalac- totraceSF.Adoptingtheluminosity-weightedduration,wedefine ticSFrelationsholdasafunctionofgalactocentric radiusinanidealised tstar =2Myr(seeTable1). discgalaxy(seetext).Thereddashedlineshows∆xsamp,whichaccounts forthestatistical samplingofthedifferentphasesoftheSFprocess.The InallcasesotherthantheCMZ,thegalacticSFrelationbreaks down first due to the incomplete sampling of independent star- blue dotted line shows ∆xIMF, which accounts for the sampling of the high-mass(SF-tracing)endoftheIMF.Thegreendash-dottedlineshows forming regions (i.e. below ∆xsamp), whereas in the CMZ the ∆xdrift,whichaccountsforthedriftofgasandyoungstarsacrosstheaper- SFRistoolow toadequately sampletheSFtracer fromtheIMF tureboundary.Ateachradius,theblacksolidlineshowsthemaximumof on scales lap < 80 pc. This is due to the low SFR measured in thesethreelimits,∆xmax.Theverticaldottedlinesindicatethescalera- theCMZ(Longmoreetal.2013),buteveniftheCMZwereform- diusRsandtheopticalradiusR25 ∼ 5Rs(e.g.Leroyetal.2008),while ing stars at a higher rate, the effect of drift would still be more thegreyboxindicatestheradiusintervalwheremostoftheSFoccursinan important than the incomplete sampling of star-forming regions exponentialdisc(R=0.5–3Rs). (i.e. ∆xdrift > ∆xsamp). The typical size-scales above which galacticSFrelationsholdvaryfrom∼ 100pcintheCMZtoal- mostakpcintheSN.Itcanbeinferredfromequation(10)thatthis σ = 10kms−1.Inthecentralkpc,thevelocitydispersionisas- lattervalueisrepresentativeformuchofthepopulationofnearby, sumedtoriselinearlytoacentralvalue of σ = 50kms−1,and star-forminggalaxies.ThesegalaxiessatisfyabroadtrendofΩ∝ therotationcurveisassumedtobesolid-body(i.e.Ωisconstant). Σ0.5 with about 0.3–0.5 dex scatter (Krumholz&McKee 2005; TheKennicutt (1998) relationisused to translatethe gassurface Kruijssen2012)becausetheysimultaneouslysatisfytheSchmidt- densitytoaSFRsurfacedensity. Kennicutt and Silk-Elmegreen SF relations (Schmidt 1959; Silk Inthecentral500pc,thedriftofgasandyoung starsacross 1997;Elmegreen1997;Kennicutt1998).Substitutionofthistrend theapertureboundarysettheminimumscaleonwhichgalacticSF intoequation(10)resultsinaroughlyconstant∆x∼1kpcforall relations hold (∆x ∼ 150 pc), which is consistent with the drift surfacedensities,withavariationof0.6–1.0dexasinTable2.Be- knownoffsetbetweenthedensegasand24µmsourcesintheCMZ causethesize-scalesofGMCsandstellarclustersaremuchsmaller oftheMilkyWay(Yusef-Zadehetal.2009;Longmoreetal.2013). (Longmoreetal.2014),itisclearthattheycannotsatisfygalactic However,theincompletesamplingofindependentstar-formingre- SFrelations. gions sets ∆xsamp = 100–900 pc over the largest part of the InFigure2,weillustratetheradialprofilesofthethreediffer- galaxy, in the radius range R = 1–9 kpc. At larger radii, the ent∆xifromequations(5)–(7)aswellas∆xmaxforadiscgalaxy incomplete sampling of SF tracers from the IMF kicks in and withalogarithmicpotential(V =200kms−1),anexponentialgas ∆xIMF>1kpc.AdirectimplicationisthatwhenusingSFtracers surfacedensity profilewithcentral value Σ(0) = 200 M⊙ pc−2 that are visible over a longer age range (e.g. FUV), the IMF re- and scale radius Rs = 2.5 kpc, and agas velocity dispersion of mainsproperlysampledouttolargerradii.Thisiswhydiscsdonot An uncertaintyprincipleforstarformation 5 showthesametruncationintheUV(Thilkeretal.2007)aswhen scatter.Inthesimplecaseof tgas = tstar,thetransitionbetween observed in Hα (Martin&Kennicutt 2001; also see Bigieletal. bothregimesoccursatlap =2–3λ. 2010).ConsideringthatthemajorityoftheSFinexponentialdisc The other terms of equation (12) will vary substantially be- galaxiesoccursbetween0.5and3gasscaleradii,Figure2shows tween different tracers, galaxies, and specific observations. The that∆xsamp moststronglyrestrictstheapplicationofgalacticSF scatter due tothe luminosity evolution of gaseous regions during relationsonsmallscales. tgasandstellarregionsduringtstar dependsonitsparticularfunc- tionalform.Likewise,thescatterduetothemassspectrumofthe independentregionsalsodependsonitsdetailedcharacteristics.In 3.2 ThescatterofSFrelations bothcases,thescatterdoesdecreasewiththeaperturesize,simply Galactic SF relations are often characterised by defining the gas because thescatterof themeandecreases withthenumber of re- depletiontime-scaletdepl ≡ Mgas/SFR,whichallowsthescatter gionssampled,i.e.σmean =σ1N−1/2,whereσ1isthescatterfora oftheSFrelationtobequantifiedastheroot-mean-square(RMS) singleregion.Asstatedpreviously,thenumberofsampledregions scatter of the depletion time-scale σlogt (e.g. Bigieletal. 2008; N ∝ (lap/λ)2 forlap ≫ λ,butforsmallaperturestheselection Schrubaetal. 2011; Leroyetal. 2013). In the framework of the biasofrequiringthepresenceofbothtracerspreventsN < 1(if uncertaintyprinciplepresentedin§2.1,thescatteroftheSFrela- tover 6=0)orN <2(iftover =0).Detailedexpressionsareagain tionforanaperturewithdiameterlapisdeterminedbythePoisson providedinAppendixB,andareincludedinthepubliclyavailable statisticsofthenumberoftimestheSFphasesaresampledwithin routines (see Appendix A). Weleave the scatter due tothe lumi- theaperture,whichwillbedominatedbytheshortestphase.Addi- nosityevolutionandthemassspectrumforsingleregionsasafree tionalsourcesofscatteraretheluminosityevolutionofthegasand parameter. Reasonable values are σevo,1g = σevo,1s = 0.3 dex starsduringtgas andtstar,respectively, themassspectrumofthe fortheluminosityevolutionofasinglegaseousorstellarpeak,re- independentregions,andtheintrinsicobservationalerror: spectively(cf.Leroyetal.2012),andσMF,1 ∼ 0.8dex,whichis roughlyappropriateforapowerlawmassspectrumwithaslopeof σl2ogt =σs2amp+σe2vo+σM2F+σo2bs, (12) −2over afactor of 40 in mass. Finally, the observational scatter actsasaconstantlowerlimitoverallsize-scales,whichinpractice whereσsampindicatesthePoissonerror,σevorepresentsthescatter causedbytheluminosityevolutionofindependentregions,σMFis flattenstheσlogt–laprelationatlargeaperturesizes. Inadditiontotheanalyticexpressionprovidedabove,wees- thescatterduetothemassspectrum,andσ denotestheintrinsic obs observational error. The full derivation of these four components timate the scatter in logtdepl with a simple Monte-Carlo experi- ment,inwhichwerandomlydistribute50,000pointsoveranarea is presented in Appendix B and we describe their qualitative be- haviourhere. suchthattheirmeanseparationisλ=130pcandpositioneachre- gionrandomlyonthetimesequenceofFigure1,usingtime-scales Forlap ≫ λ,thescatterduetothePoissonstatisticsofsam- plingindependentregionsdecreaseswithaperturesizeasσsamp ∝ tgas = tstar andtover = 0.Wedonotincludeanypossibleevolu- l−1, because the relative Poisson error of the number of regions tionofeachregion’sluminosityineithertracer,noraregionmass ap coveredinanapertureisσlnN =σN/N =N−1/2 =λ/lap.The functionoranintrinsicobservationalerror.Wethenrandomlyplace 50,000 apertures to measure the scatter in logt , only includ- distributionof theseN regionsover gasand stellarregions isset depl ingthoseaperturesthatincludenon-zerofluxforboththegasand bythefractionstgas/τ andtstar/τ,respectively,implyingthatfor SFtracers.Theresultingrelationbetweenthescatterandtheaper- largelapwehave: turesizeisshowninthetoppanelofFigure3(blackline),which σlogt =α 1+min ttsgtaasr,ttsgtaasr 1/2 ∆xlampax, (13) ainlsgooinllluys1tr0a0teasptehratutrtehseivsamriiantoiorn(gorfeythaereoab)t.aAinteldarrgeelaatpioenrtuwrheesnizuess-, (cid:20) (cid:18) (cid:19)(cid:21) thescatterdecreasesasσ ∝N−1/2 ∝l−1,whichisexpected logt ap whereα ≡ 1/ln10 ≈ 0.43convertsthelogarithmicscatterfrom forPoissonstatistics.Asexplainedabove,thescatteralsodoesnot baseetobase10,theterminbracketsaccountsfortheconversion increaseindefinitelytowardssmallapertures,becauseaperturesnot ofthescatterofasingletracertothecombinedscatterofbothtrac- includingbothtracersarediscarded.Fortheadoptedparameters(in ersontdepl,andtheratio∆x/lapcountsthenumberofshortestSF particulartover =0),thisrequiresatleasttwoindependentregions phases withinthe aperture.1 Ifthe apertures weretrulyrandomly tobepresentintheaperture.Theprobabilityoffindingmorethan positioned,thisexpressionwoulddescribethescatterforallspatial thatdecreasesrapidlywhenlap ≪λ,implyingthatmostapertures scales. However, the scatter does not keep increasing indefinitely that are not discarded have the same content of one gaseous and towardssmallaperturesizes(lap <λ),becauseonlyaperturesthat onestellarregion.Asaresult,thescattergoestozeroforlap ↓0. containboththegasandSFtracerareincluded–otherwisethegas The top panel of Figure 3 also shows that the analytic ex- depletiontime-scalewouldbezeroorinfinity.Iftover =0,thisse- pressionofequation 12andAppendixB(reddashedline)agrees lectionbiasimpliesthatverysmallapertureseachtypicallycontain verywellwiththeMonte-Carloexperiment.2 Thedecreaseofthe thebareminimumofonegaseousregionandonestellarregion(the scatteratsmallaperturesizesvanisheswhenincludingσevo,1g = probabilityofcatchingmoreisnegligible),whichcausesthescat- σevo,1s = 0.3 dex scatter (blue dashed line). Even when all tertovanish. Thismeansthatatsmallaperturesizes,thePoisson apertures have the same content of (at least) one stellar and one scatteractuallyincreaseswithaperturesizeratherthanthedecrease gaseous region, the evolution of the gas-to-stellar fluxratio leads thatisseenatlap ≫ λ.Inthispartofthesize-scalerange,thelu- minosityevolutionandthemassspectrumthereforedominatethe 2 Thesmalldiscrepancy atlap ∼ 2λisnotduetostatistical noiseand 1 Wehavetestedtheinfluenceofanon-homogeneousenvironment(e.g.an arisesbecause thederivation inAppendixBdoesnotinclude thecovari- exponential discgalaxywithascaleradius Rs <∼ lap)andtheresulting ancebetweenthenumberofgaseousandstellarregions.Thecompleteex- variationof∆xmaxwithintheaperture.Wefindthatequation(13)remains pressionisconsiderablymorecomplex,whichisundesirableinviewofthe accuratetowithinafewpercentunderallphysicalcircumstances. satisfactoryaccuracyofthepresentedform. 6 J. M. D.Kruijssen& S.N. Longmore massfunctionaffectsthegasandstellarfluxinthesamewayand hencedoesnotintroduceadditionalscatter.Finally,includinganin- trinsicobservationalerrormarginofσ =0.15dex(greydashed obs line)causesthescattertosaturateatσlogt =σobsforlap →∞. For reference, Figure 3 includes the relation be- tween the scatter and the aperture size that was found by Feldmann,Gnedin&Kravtsov(2011)ingrid-basedhydrodynami- calsimulationsof(disc)galaxies.Althoughadetailedcomparison isobstructed by the somewhat arbitraryposition on the x-axis of eachmodel (our models assumeλ = 130 pc), bothresultsagree forlap > 300pc.Atsmalleraperturesizes,thecomparisonisnot representative because in that regime the size-scale dependence ofthescatter depends onthedetailsoftheunderlying luminosity evolution and the adopted mass spectrum. Nevertheless, the prediction that some flattening of the relation must occur below size-scalesofafew100pcseemstoberobust. Usingequation(12),wecannowpredictthescatteroftheob- served gas depletion time-scale as a function of aperture size for severalofourexamplesystemsfromTable2.Thisisshowninthe bottompanelofFigure3forthediscgalaxy,dwarfgalaxyandSMG parametersets.Thegalaxiesfollowroughlythesametrendofde- creasingscatterwithaperturesize,butthereareseveralrelevantdif- ferences.Forinstance,thebumpsandslightlywave-likebehaviour iscausedbythedissimilarvaluesoftgasandtstarandtheresulting increaseof∆x–thebumpvisibleatlap ∼500pcforthedwarfand discgalaxiescoincideswith∆x = τ/∆tλ ∼ 3.9λ ∼ 500pc. Fortgas ∼ tstar,thisbumpwould havemoved tolap ∼ λ,asis p thecasefortheSMGparameterset.Thedotted,dashedanddash- dottedlinesshowhowthesize-scaledependenceofthescatterde- Figure 3. Scatter in the gas depletion time-scale as a function of aper- pends on the luminosityevolution of individual regions and their turesizelap.Toppanel:Theblacksolidlinereflectstheresultofasim- underlyingmassspectrum.Whilethevariationisnon-negligible,it pleMonte-Carloexperimentusing50,000randomlyplacedapertures.The clearlyrepresentsasecondaryeffect.Theoveralltrendisthatthe grey area indicates the RMS scatter of the scatter when using only 100 apertures. The red dashed line represents the analytic model from equa- scattervariesfromσlogt ∼ 0.9atlap = 50pctoσlogt ∼ 0.2at tion(12)andAppendix Bforσevo = σMF = σobs = 0,andthered lap =1kpc,indicatingaroughpower-lawrelationof: dottedlineindicatesitspower-lawbehaviourforlap ≫λasexpressedin −0.5 equation(13).The{blue,green,grey}dashedlinessubsequentlyaddscat- σ ∼0.2 lap , (14) ters of{σevo,1,σMF,1,σobs} = {0.42,0.8,0.15}dextoillustrate the logt (cid:18)kpc(cid:19) effects ofthe luminosity evolution ofindependent regions, acloud mass spectrum,andanintrinsicobservationalerror,respectively.Theblackdot- forlap = 0.05–1kpc.Notethatthedetailsofthisrelationareby no means universal and should vary substantially between galax- tedlineindicatestheresultfromFeldmann,Gnedin&Kravtsov(2011)for aparticularnumericalsetup(seetext).Bottompanel:The{blue,green,red} iesduetovariationsinλ,tgas,tover,σevoandσMF.Whileaslope solidlinesshowthe{dwarf,disc,sub-mm}galaxiesfromTable2.Wehave of −1 is expected for pure Poisson statistics, we see that a shal- setσevo,1g =σevo,1s =0.3dex,σMF,1=0.8dexandσobs=0.15dex lowerslopecanemergeduetothecombinedeffectoftheflattening asinthetoppanel.The{dotted,dashed,dash-dotted}linesrefertothedisc atsmallaperturesizesthatwasexplainedabove, theintrinsicob- galaxymodelwithσMF,1 = 0dex,σMF,1 = 1.6dex,andσevo,1g = servationalerror,andthedissimilarityoftgas andtstar.Although σevo,1s = 0 dex, respectively. The grey-shaded area indicates the part a detailed comparison with observations is deferred to K14, Fig- of parameter space covered by nine galaxies from the HERACLES sur- ure3doesshow whichpart ofparameter spaceiscovered bythe vey(Leroyetal.2013).ThefilleddiamondsrepresentM33(Schrubaetal. observed nearby galaxies of Leroyetal. (2013), as well as M33 2010)andtheopendiamondindicatesM51(Blancetal.2009). (Schrubaetal.2010)andM51(Blancetal.2009),indicatingthat ourmodelagreesverywellwiththetrendoftheseobservations. to residual variance and hence the scatter approaches σ2 = logt σe2vo,1g + σe2vo,1s for lap ↓ 0. Similarly, including a scatter of σMF = 0.8 dex due to an underlying mass function (green 3.3 HowtheuncertaintyprincipleconstrainsSFphysics dashed line) causes the scatter at small aperture sizes to saturate Thusfar,wehaveassumedthataperturesarerandomlypositioned at σ = σ2 +σ2 +σ2 /2. It also increases the logt evo,1g evo,1s MF,1 on a galaxy. However, it is also possible to estimate the relative scatteratlargeaperturesizes.Notethatthepresenceorabsenceof amassfunctpion doesnot affectthescatterat smallaperturesizes change of themeasured gasdepletion time-scale asafunction of aperturesizewhencenteringitonaconcentrationofgas(increasing whentover 6= 0–thescatteratsmallaperturesizesisthendomi- t withrespecttothegalacticaverage)oryoungstars(decreas- natedbysingleregionsresidingintheoverlapphase3,forwhicha depl ing t with respect to the galactic average, see Schrubaetal. depl 2010).Inparticular,weshowinthissectionthatthisrelativechange 3 Fortypicalparameters,thisismorelikelythancatchingonegaseousand (orbias)isaveryusefulquantitytoconstrainthetime-scalesgov- onestellarregionindependentlyinasingleaperture. erningtheevolutionofgasandSFingalaxies. An uncertaintyprincipleforstarformation 7 Therelativechangeofthegasdepletiontime-scalewhencen- tering apertures on gas or stellar peaks can be estimated with a simplestatisticalmodel.Thedepletiontimeisdefinedast ≡ depl Mgas/SFR ∝ Fgas/FSF,whereFgas and FSF indicatetheflux emittedbygasandSFtracers,respectively.Theexpectedfluxfrom both tracers in apertures focussed on gasor stellar peaks follows fromthe Poissonstatisticsof independent regions inapertures of varyingsize.Theresultingfluxratiocanthenbecomparedtothe galaxy-wide flux ratio to obtain the relative change of the mea- suredgasdepletiontime-scale.Thederivationispresentedindetail inAppendixCandonlytheresultisprovidedhere. Bycenteringanapertureonagaspeak,thegasfluxisguar- anteedtobenon-zeroandmayincreaseduetoadditionalgas-rich regionsresidingintheaperturebychance–theexpectednumberof these‘contaminants’increaseswiththeaperturesize.Bycontrast, thestellarfluxcouldpotentiallybezero,becauseitisconstitutedby thesumofthefluxemittedbystellarregionsresidingintheaperture bychanceandthefluxemittedbythecentralgaspeakifithappens tobeintheoverlapphase(whichcanonlyoccuriftover 6=0).The relativechangeofthegasdepletiontime-scalethenbecomes Figure 4. Expected relative change of the measured gas depletion time- 2 scale as a function of aperture size when centering on gas peaks (top [tdepl]gas = 1+ tgτas laλp ,(15) curves) or stellar peaks (bottom curves) for several combinations of [tdepl]gal βsttostvaerr 1+(βs−1)ttos(cid:16)tvaerr −(cid:17)1+ tgτas laλp 2 m{togvaasl,dtsutearto,tfoeveedrb}ac(kseoeccleugrseninds).taEntxacneepotuswlyhearnednhoetnecdeoththeeorwveisrlea,pgeaqsuarels- (cid:2) (cid:3) (cid:16) (cid:17) the duration ofSF (tover = tSF). The thick black curves represent the Analogously,foranaperturecenteredonastellarpeakwefind referencevariableset,withtgas = tstar andtover = 0.Theorangeand redcurvesillustratetheeffectofanon-zerooverlaptime,thegreencurve −1 2 showstheeffect oftheratio betweenthedurations ofthegasandstellar [tdepl]star = βgttogvaesr 1+(βg−1)ttogvaesr + tsτtar laλp .(16) padhdassetsh,eanefdfetchteocfynanonc-uinrvsteanintadniceaotuessgthaescreommobvinaleddueeffetoctf.eTedhbeabclku,ewciuthrvea [t ] h i 2 (cid:16) (cid:17) depl gal 1+ tsτtar laλp SFtime-scaleoftSF=3Myrandacharacteristicgasremovalvelocityof (cid:16) (cid:17) vej = 100kms−1.Theverticaldottedlinedenotestheadoptedtypical separationbetweenregionsλ = 0.13kpc(cf.Table2).The(asymptotic) Ithnethmeeseaneqguaastfliounxs,oβfgpe≡akFsgin,otvheer/oFveg,rilsaopinFdgi,coavteersatnhdetrhaetiombeeatnwfleuenx fivagluureesirneagcrheeyd. Afosrlcaapn↓be0vaerreifiineddicbaytesdubtoswtitaurtdinsgtheeqruigathiot-nha(n5d)sinidtoeoefquthae- of those in isolation Fg,over. Likewise, βs ≡ Fs,over/Fs,iso in- tions(15)and(16),thebiasoftdeplneverexceedsafactoroftwoaslong dicates the same ratio for stellar fluxes. These flux ratios can be aslap>∆xsamp. directlymeasuredfromobservationsifthespatialresolutionallows thesmallestaperturestocontainonlyasingleregion(i.e.lap <λ). Byonlyconsideringthesmallestapertures,onecanthenobtainβg thatonlydetectsunembeddedstars,thentSFmustbeclosetozero andβsbydividingthemeanfluxinaperturescontainingbothtrac- andhencethedurationoftheoverlapismainlysetbygasremoval. ersbythemeanfluxinthosecontainingonlyasingletracer.Ifthe InFigure4,weshowtherelativechangeofthegasdepletion spatial resolution isinsufficient, some parametrization of theflux time-scaleresultingfromequations(15)and(16)fordifferentcom- evolutionneedstobeassumed.Forinstance,ifthegas(stellar)flux binations of tgas, tstar and tover. WhileFigure3 already showed decreasestozero(increasesfromzero)linearlyduringtheoverlap substantialscatteronscalessmallerthanafew100pc,wenowsee and is constant otherwise, then βg = βs = 0.5. The advantage that centering an aperture on an overdensity of gas or stars sys- ofmeasuringthefluxratioratherthanadoptingsomeparametriza- tematicallybiasesthegasdepletiontime-scalebyuptoanorderof tion of the flux evolution is that equations (15) and (16) become magnitudeormore.Thisiscausedbecausefocussingonacertain independentofanypriorassumptions. tracerguaranteesittobepresentintheaperture,whichleadstoa Inequations(15)and(16),thenumber1inthenumeratoror different depletion time-scalethan measured on average through- denominator indicates the guaranteed gas or stellar peak, respec- out the galaxy. If tgas = tstar, this occurs symmetrically around tively. The terms containing (lap/λ)2 represent the gas and stel- thegalacticvalueofthedepletiontime,butinallothercasesthere lar peaks residing in the aperture by chance. If lap ≫ λ, then existsanasymmetrybetweenthecurvesfocussingongasorstars, both equations approach unity and the bias of the gas depletion which depends on the ratio tgas/tstar. This is easily understood, time-scalevanishes. Finally,theterminthedenominator (numer- becausethebiasiscausedbytheguaranteeofhavingagaseousor ator) containing βs (βg) reflectsthe non-zero probability of find- stellarpeak–ifthevisibilitytime-scaleofeithertracerexceedsthat ing stars (gas) in the central gas (stellar) peak in case the gas oftheother,itwillalsobemorenumerousatagiveninstant.There- and stellar phases overlap (i.e. tover 6= 0). As explained in §2.2, fore, the guarantee of including at least one region bright in that tover encompassesthedurationofSFtSFaswellasthetime-scale tracer will change the depletion time-scale by an amount smaller for the removal of gas from the aperture or region by feedback thanwhenfocussingontheshorter-livedtracer. tfb =min(lap,λ)/vej,wherevejisthecharacteristicremovalve- If the gas and SF tracers never overlap (tover = 0), the de- locityofthegas,beitbyaphasetransitionorbymotion.Together, pletiontime-scaleinthelimitlap ↓ 0goestoinfinity(zero)when thisyieldstover = tSF +min(lap,lT)/vej.Whenusing atracer focussingongaseous(stellar)peaks.Bycontrast,anon-zeroover- 8 J. M. D.Kruijssen& S.N. Longmore lapbetweenthegasandstellarphases(i.e.thedurationofSFand gasremoval) introduces aflatteningof thecurves inFigure4for aperture sizes smaller than the typical separation of independent regions. When both phases overlap for some duration, then there isalwaysanon-zeroprobabilitythatbothtracersarepresentinthe aperture,evenwhenonlyasingleregioniscovered.Thisprevents thedepletiontime-scalefromapproachingzeroorinfinityforsmall aperturesizes. Inparticular, whenfocussing ongaspeakswesee thatthebiasoft saturatesatavalueof depl lim [tdepl]gas =1+β−1 tstar −1 , (17) lap↓0 [tdepl]gal star tover (cid:16) (cid:17) whereaswhenfocussingonstellarpeaksitapproaches lim [tdepl]star = 1+β−1 tgas −1 −1. (18) lap↓0 [tdepl]gal gas tover h (cid:16) (cid:17)i Becausetstarisknownfromstellarpopulationmodelling,thisim- pliesthattherelevanttime-scalesoftheSFprocesscansimplybe readofffigureslikeFigure4.Thisisapotentiallyverypowerfulap- plicationofourframework,whichisdiscussedinmoredetailbelow andinAppendixA.Figure4alsoshowsthattheinclusionofafinite gasejectionvelocitycausestheflatteningforsmallaperturestobe- come more gradual, which occurs because the non-instantaneous Figure 5. Comparison of the gas depletion time-scales seen in a simple removal of thegasincreases theduration of theoverlapfor large Monte-Carloexperiment(seetext)tothoseoftheanalyticexpressionsof aperturesizes(seeabove). equations(15)and(16),centeringtheaperturesongaspeaks(topcurves) Notethatthetime-scalesobtainedthroughthismethodshould orstellarpeaks(bottomcurves).Topleft:Thereddashedlineindicatesthe beinterpretedcarefully.ThetimesequenceofFigure1followsthe analyticexpression.Thegreyareasindicatetheuncertaintyrangeforsmall massflowofthegastowardsandthroughSF,i.e.itis‘Lagrangian’. numbersofapertures (seelegend) asobtained fromtheMonte-Carlo ex- BecausenotallofthegasisconsumedintheSFprocess, amass periment. Topright:Asintheprevious panel, butassigningapower-law massspectrumtotheregions,coveringtwodecadesinmasswithaslope unitlikelycompletesthesequenceofFigure1multipletimes,either of−1.7.Bottom left: Effect of the spatial randomisation, comparing the byonlyperipherallyparticipatingintheSFprocessorbyactually analyticexpression(reddashedline)totheMonte-Carloexperimentfora formingastarandsubsequentlybeingejectedbyfeedback.Inthis hexagonalequidistantgrid(green),foranadditionalrandomscatterupto context,tgasreflectsthetotaltimeinbetweensubsequentSFevents 0.5λ(blue),andforafullyrandomdistribution(black).Bottomright:Ef- during which the mass unit is visible in the gas tracer. This also fectofincompleteness,comparingtheanalyticexpression(reddashedline) meansthattgasmayspaninterruptionsduetophasetransitionsun- totheMonte-Carloexperiment(black),usingthesamemassspectrumasin relatedtoSF.Whilethedurationoftheseinterruptionsthemselves thetoprightpanel.Inthecaseof‘coupledlimits’,thegasandstellarmass doesnotcontributetotgas,anypriorvisibilityofamassunitinthe spectra are undetected below twice their minimum mass, whereas in the adoptedgastraceriscontainedintgas. caseof‘independent limits’thegas(stellar)massspectrumisundetected As a first test of equations (15)–(18), we have performed a belowfive(three)timestheminimummass.Dashedlinesindicatetheana- set of Monte-Carlo experiments very similar to those discussed lyticmodelwhensettingtgas,tstar andtover tothemeantime-scalesfor whichthetracersaredetectable(ordetectablyoverlapping). in §3.2. We randomly distribute 20,000 points over an area such that their mean separation is λ = 130 pc and position each re- gionrandomlyonthetimesequenceofFigure1,usingtime-scales {tgas,tstar,tover}={10,5,3}Myr.Thegas(stellar)luminosityis the model to interpret observational data – for larger numbers of takentodecrease(increase)linearlyduringtheoverlapphasewhile apertures, theory and simulation converge to high accuracy. The remainingconstant whenonlyasingletracerispresent,implying scatter increases by about afactor of twowhen including amass βg = βs = 0.5.Wethenplaceaperturesofdifferentsizes,which spectrum(top-rightpanel),to∼ 0.2dex,suggestingthattheanal- are focussed on each of these regions. The entire gas and stellar ysisproposedhererequiresaminimumofabout 100aperturesto fluxforthesubsetsofaperturescenteredongasandstellarpeaks, yield statisticallyuseful results. Note that the applicability of the respectively,arethenaddeduptoobtainthebiasofthegasdeple- analyticexpressionsisunaffectedbythepresenceofamassspec- tion time-scale as a function of aperture size. In addition to this trum.Thethirdpanel inFigure5addresses theassumptionmade standard model, insome cases weassign a mass spectrum tothe thusfarthatindependent regionsarerandomlydistributed.Ifthey regions, account for detection limits, or consider different spatial are distributed on an equidistant, hexagonal grid with inter-point distributionsofthepoints. separationλ,thefamiliarsaturationofthedepletiontime-scaleat Figure 5 shows the comparison between the Monte-Carlo smallaperturesizesisalreadyattainedatλ–atsmallersize-scales modelandtheanalyticexpressionsofequations(15)and(16).The there is never more than a single region residing in the aperture. valuesofβg andβs usedintheanalyticexpressionsaremeasured Theaddition of random perturbations tothisfixed distributionof fromtheMonte-Carlomodelastheywouldbedeterminedfromob- pointsshiftsthesaturationpointto0.5λ.Ineithercase,thesatura- servedgalaxies(seetheearlierdiscussion)–theothervariablesare tionvalueisstillareliablemeasureoftgasandtover. simply set according to the initial conditions of the Monte-Carlo Thebottom-rightpanelofFigure5considerstheeffectofin- model. The top-left panel shows that when using only 100 aper- completeness–thepartialdetectionofthemassspectraofgaseous tures,anuncertaintyof∼ 0.1dexshouldbeexpectedwhenusing and stellar regions. Unsurprisingly, the bias of the gas depletion An uncertaintyprincipleforstarformation 9 time-scale changes when only part of the mass spectrum is de- the inference of SF physics from galactic SF relations (see e.g. tected.Thisgivesincorrectresultswhenusingthemodeltoderive Kennicutt&Evans 2012), because it relies exclusively on tracer tgas and tover from observations. It makes no difference whether fluxratios. thedetectionlimitsofthegasandSFtracersarecoupled(i.e.the Fortran and IDL modules for applying the uncertainty principle gas limit turns into the stellar limit and the number of regions are available at http://www.mpa-garching.mpg.de/KL14principle. is conserved between both tracers) or independent. However, we Achecklistdetailingtherequiredstepsfortheirobservationalap- alsoshowtheanalyticmodelwhenadoptingthemeandetectability plicationissuppliedinAppendixA. time-scalesof the gasand SFtracersrather than their underlying lifetimes,aswellasthemeandurationoftheirdetectableoverlap (dashedlines).TheseagreewellwiththeMonte-Carloexperiment, 4.2 Assumptions,observationalcaveatsandbiases indicating that the time-scales that are obtained from incomplete observations refer to the time-scales during which thetracers are ThestatisticalargumentsusedtoderivetheexpectedscatterinSF detectable. When the observations are incomplete, this naturally relations rely on several implicit assumptions. If this theoretical differsfromtheunderlying,truelifetimesofthegasandSFtracers framework is applied in regimes where these assumptions break andtheiroverlap. down,thederivedscatterwillvaryfromthatpredicted.Forexam- We conclude that measurements of the gas depletion time- ple,wehaveassumedthatthegalacticSFRisroughlyconstantover scaleinsmallaperturescenteredongasorSFtracersdirectlyprobe τ,which willbreak down ina localised‘starburst’ event.4 Alter- thedurationoftheseveralphasesoftheSFprocess.Thismayopen natively, if the physical properties of a galaxy vary substantially upanewavenuetoinferthephysicsofSFandfeedbackasafunc- within a given observational aperture, the characteristic size and tionofthegalacticenvironment. mass of independent regions may also change, potentially giving risetoadditionalscatter.Also,theaboveframeworkhasbeende- finedunderthesimplestassumptionthatthegalaxyisface-on.As inclination will directlyaffect several key variables (e.g. the pro- 4 DISCUSSION jectedaperturearea,gas/starsurfacedensity, rotationcurves), the 4.1 Summary deprojectedvaluesshouldbeused. Ourframeworkalsoassumesthatobservationsaccuratelyre- Wehavepresentedasimpleuncertaintyprincipleforspatiallyre- cover the full underlying gas and young star distributions. In the solvedgalacticSFrelations.Thisexplainsthefailureoftheserela- idealisedcasewhereallindependentstar-formingregionshavethe tionsonsmallspatialscalesastheresultoftheincompletestatis- samecharacteristicmass(e.g.theToomremassMT =σ4/G2Σ), ticalsamplingofindependentstar-formingregions.Themaincon- the observations need to be sufficiently sensitive to both (1) de- clusionsofthisworkareasfollows. tect thischaracteristic gas mass and (2) detect the stellar popula- (i) Throughoutmostoftheknownstar-formingsystems,thein- tioneventuallyresultingfromthisgas(e.g.theToomremasstimes completesamplingofindependentstar-formingregionsdetermines someSFefficiency).However,inpracticethegasmassdistribution thespatialscale∆xbelowwhichgalacticSFrelationsbreakdown. willbecontinuousandhencesensitivitylimitationsmeanthatob- Itprovidesamorestringentcriterionthantheincompletesampling servationswillonlydetectemissionfromafractionofthegasand ofSFtracersfromtheIMF(whichdominatesintheouterregionsof youngstars.Wehaveshownin§3.3thatthisaffectsthetime-scales galaxydiscs)orspatialdrift(whichdominatesingalaxycentres).If that are retrieved when considering the bias of the gas depletion theToomrelengthsetstheseparationofindependentstar-forming time-scaleinsmallapertures.Ideally,thegasandSFtracerobser- regions,wepredictthatthereshouldbelittlevariationof∆xasa vationsarecomplete,butatleasttheyshouldencompassthesame functionofthegalacticgassurfacedensity. totalfractionofgascloudsandresultingyoungstellarpopulations (ii) ThePoissonstatisticsofsamplingindependentstar-forming theyproduce. Arobust applicationofourframeworkrequiresthe regions cause the scatter of the gas depletion time-scale of the recovered fraction to be large. The requirement that observations spatially resolved SF relation to depend on the aperture size as besensitivetoasimilar,substantialfractionofthegasandyoung σlogt ∝ la−pγ withγ = 0.5–1 forlap = 0.1–1 kpc.Theincrease starsbeingproducedeffectivelyplacesadistancelimitontheap- ofthescatterwithdecreasingsize-scaleflattensforsmallaperture plicabilityofthisanalysis.Theseandotherobservationalpointsof sizes, where it isdominated by the cloud mass spectrum and the cautionarediscussedinmoredetailinAppendixA2. detailsoftheluminosityevolutionduringtheSFprocess.Wefind Onefinal thingtobear inmind, isthat our uncertainty prin- goodagreementwiththeobserveddependenceofthescatteronthe ciple mainly considers the statistics of observational tracers of a spatialscale. physical system rather than directly describing that system itself. (iii) Whenfocussingaperturesongasorstellarpeaks,themea- As described in §3.3, the physics of SF can be characterised by sured gas depletion time-scale is biased to larger or smaller val- consideringtheireffectsonthesestatistics. ues,respectively.Thisbiasdirectlyprobesthetime-scalesgovern- ing the SF process, such as the duration of the gas phase and its timeoverlap with thestellar phase. Thesetime-scales can be ob- 4.3 Implicationsandfutureapplications tainedfromgalaxy-wideobservationswithouttheneedtospatially The uncertainty principle presented in this paper shows that care resolve independent star-forming regions – resolving their mean must be taken when comparing galactic SF relations to small- separationsuffices.SimpleMonte-Carlomodelsoflargenumbers scale SF relations and provides quantitative limits on their appli- ofstar-formingregionsshow thatthemethod isinsensitivetothe cloudmassspectrumandcanbeappliedreliablywhenatleast100 gas or stellar peaks are used. Another important strength of this 4 Intheframeworkofthispaper,thecloudsandregionsinagalaxy-wide methodisthatitisnothamperedbytheuncertainconversionfac- starburstarenolongerindependent, whichimplies that theentire galaxy torsbetweengastracerfluxandgasmassthattraditionallyplague actuallyconstitutesasingleindependentregion. 10 J. M.D. Kruijssen&S. N. Longmore cability. For instance, SF relations measured in the solar neigh- tailed comments on the manuscript, and to Frank Bigiel, Simon bourhood (Heidermanetal.2010;Lada,Lombardi&Alves2010; Glover,AdamLeroy,AndreasBurkertandRalfKlessenforstimu- Gutermuthetal.2011;Ladaetal.2013)arefundamentallydiffer- latingdiscussionsand/orcommentsonanearlydraftofthiswork. ent from their galactic counterparts. Small-scale SF relations de- We acknowledge the Aspen Center for Physics for their hospi- scribetheconversionofdense(andlikelyself-gravitating)gasinto tality and to the National Science Foundation for support, Grant stars, whereas large-scaleSF relationsadditionally cover galactic No.1066293. physics such as feedback, cooling and inflow dynamics. Despite this added complexity, the clear advantage is a better statistical samplingoftheSFprocess–andasshowninthispaper,thesmall- REFERENCES scalecharacteristicsoftheSFprocesscanbeobtainedbyconsider- BigielF.,LeroyA.,WalterF.,BlitzL.,BrinksE.,deBlokW.J.G.,Madore inghowthelarge-scaleSFrelationsbreakdown. B.,2010,AJ,140,1194 The framework of this paper also shows that there is no Bigiel F.,LeroyA.,WalterF.,Brinks E.,deBlokW.J.G.,MadoreB., reason why the SF recipes that are used in high-resolution ThornleyM.D.,2008,AJ,136,2846 numerical simulations of galaxy formation and evolution (e.g. BigielF.etal.,2011,ApJ,730,L13 Springel&Hernquist2003)shouldbemotivatedbythegalacticSF BlancG.A.,HeidermanA.,GebhardtK.,Evans,IIN.J.,AdamsJ.,2009, relation,whichinessencefailstodescribethe∆x≪100pcsize- ApJ,704,842 scalesthatcanactuallyberesolvedinmoderncalculations.Because BurkertA.,HartmannL.,2012,ApJsubmitted,arXiv:1212.4543 thepresentedframeworkisLagrangianinnature(i.e.ittracesthe CalzettiD.,LiuG.,KodaJ.,2012,ApJ,752,98 mass flow through a system), it may also be used as a means to ChabrierG.,2003,PASP,115,763 quicklyanalysemassflowsinEulerian,grid-basedsimulations,al- ElmegreenB.G.,1997,inRevistaMexicanadeAstronomiayAstrofisica, vol.27,Vol.6,RevistaMexicanadeAstronomiayAstrofisicaConfer- leviatingtheneedfortracerparticles. enceSeries,FrancoJ.,TerlevichR.,SerranoA.,eds.,p.165 The dependence of the scatter and bias of the gas depletion ElmegreenB.G.,2002,ApJ,577,206 time-scale on the aperture size (see Figures 3 and 4) presents FeldmannR.,GnedinN.Y.,KravtsovA.V.,2011,ApJ,732,115 a novel and potentially powerful way of deriving the durations FumagalliM.,daSilvaR.L.,KrumholzM.R.,2011,ApJ,741,L26 of the different phases of the SF process, such as how long the GenzelR.etal.,2010,MNRAS,407,2091 gasand starsarevisible intheir respective tracers, and how long GutermuthR.A.,PipherJ.L.,MegeathS.T.,MyersP.C.,AllenL.E., the phase lastsduring whichboth arevisible (i.e.the duration of AllenT.S.,2011,ApJ,739,84 SF itself as well as the resulting gas removal). Any possible de- Heiderman A.,Evans, IIN.J.,AllenL.E.,HuardT.,HeyerM.,2010, generacies can be lifted by considering different tracers. For in- ApJ,723,1019 stance,whenusingHαtotracestarsandassumingtstar =2Myr, HeisenbergW.,1927,ZeitschriftfurPhysik,43,172 ∆xsamp ∝(τ/∆t)1/2isindistinguishablefortgas ={1,4}Myr. KennicuttR.C.,EvansN.J.,2012,ARA&A,50,531 Kennicutt,Jr.R.C.,1998,ApJ,498,541 However,whenaddingFUVandhencetstar = 14Myr,bothgas KruijssenJ.M.D.,2012,MNRAS,426,3008 tracerlifetimescanbeseparatedandthedegeneracyislifted.The Kruijssen J. M. D., Longmore S. N., Elmegreen B. G., Murray N., useofdifferentSFtracersthatcapturetheearly,embeddedphaseof Bally J., Testi L., Kennicutt, Jr. R. C., 2013, MNRAS submitted, SFandaresensitivetodifferentstellarmasses(suchascmcontin- arXiv:1303.6286 uum,far-infraredandyoungstellarobjectcounts)maybeusedto KruijssenJ.M.D.,SchrubaA.,LongmoreS.N.,BigielF.,2014,inprep. maptheassemblyofthestellarmassfunction.Similarly,thecom- (K14) bination of different gastracers inour framework can be used to KrumholzM.R.,McKeeC.F.,2005,ApJ,630,250 constrain time-scales for gas phase transitions (e.g. HI→H2) and Lada C., Lombardi M., Roman-Zuniga C., Forbrich J., Alves J., 2013, tomapthegasvolumedensityevolutiontowardsSFasafunction ApJinpress,arXiv:1309.7055 LadaC.J.,LombardiM.,AlvesJ.F.,2010,ApJ,724,687 ofabsolutetime.Weconcludethatouruncertaintyprincipleandits LeeJ.C.etal.,2011,ApJS,192,6 corresponding framework provide a powerful tool to characterise LeithererC.etal.,1999,ApJS,123,3 theSFprocess,usingspatiallyresolved,galaxy-scaleobservations. LeroyA.K.etal.,2012,AJ,144,3 Finally,wenotethatthestatisticalmodelpresentedinthispa- LeroyA.K.,WalterF.,BrinksE.,BigielF.,deBlokW.J.G.,MadoreB., per is very general and applies to any astrophysical process that ThornleyM.D.,2008,AJ,136,2782 can be separated into (partially overlapping) subsequent phases: LeroyA.K.etal.,2013,ApJinpress,arXiv:1301.2328 any system that is subject to some degree of time-evolution. By LiuG.,KodaJ.,CalzettiD.,FukuharaM.,MomoseR.,2011,ApJ,735, contrast, it cannot be applied when the correlated quantities are 63 the simultaneous result of an underlying phenomenon (e.g. the LongmoreS.N.etal.,2013,MNRAS,429,987 colour-magnituderelationofmainsequencestars).Thefundamen- LongmoreS.N.etal.,2014,ProtostarsandPlanetsVI,inpress MartinC.L.,Kennicutt,Jr.R.C.,2001,ApJ,555,301 talpointisthatwhenamacroscopiccorrelationiscausedbyatime- OnoderaS.etal.,2010,ApJ,722,L127 evolution,thenitmustbreakdownonsmallscalesbecausethesub- SchmidtM.,1959,ApJ,129,243 sequentphasesareresolved.Thisgeneralobservationsupportsthe SchrubaA.etal.,2011,AJ,142,37 application of the presented framework toawide range of fields, SchrubaA.,LeroyA.K.,WalterF.,SandstromK.,RosolowskyE.,2010, fromsmall-scalestarandplanetformationtogalaxyformationand ApJ,722,1699 evolution. SilkJ.,1997,ApJ,481,703 SpringelV.,HernquistL.,2003,MNRAS,339,289 ThilkerD.A.etal.,2007,ApJS,173,538 WolfireM.G.,McKeeC.F.,HollenbachD.,TielensA.G.G.M.,2003, ACKNOWLEDGEMENTS ApJ,587,278 Yusef-ZadehF.etal.,2009,ApJ,702,178 Wethankananonymousrefereeforahelpfulreport.Wearevery gratefultoAndreasSchrubaforhelpfuldiscussions,adviceandde-