An open source ABAQUS/UEL implementation of the phase‐field method to simulate brittle fracture Gergely Molnár and Anthony Gravouil Content Introduction to phase‐fields 1. Phase-field concept 2. Strain energy degradation 3. Staggered scheme Parameters 1. Finite element mesh 2. Time step 3. Length-scale parameter ABAQUS/UEL implementation Conclusion Introduction undamaged zone (0 = d) What is diffuse damage? theoretical crack (d = 1) damaged zone (0 < d < 1) Solving fracture mechanics problem with Partial Differential Equations (PDEs) Introduction What is diffuse damage? Solving fracture mechanics problem with Partial Differential Equations (PDEs) Introduction How do we approximate it with a phase‐field? 1. Brittle fracture g Griffith, 1921 c a 2. Minimization problem E u, u d g d c Mumford & Shah, 1989 Francfort & Marigo, 1998 3. Crack energy density 1 l E u, d g d u d g d 2 c d 2 d c 2l 2 c l 0 converges Ambrosio & Tortorelli, 1990 c Bourdin et al., 2000 d 0 crack energy density ‐ γ Amor et al., 2009 Miehe et al., 2010a Prof. Dr.‐Ing. Christian Miehe (1956 – †2016) Phase‐field method Staggered scheme Miehe et al., 2010b Eu u, d Ed d, H n H u if H n 0 n1 0 Robustness!!! Efficiency? Molnár & Gravouil, 2017 Phase‐field method Staggered scheme Molnár & Gravouil, 2017 Phase‐field method c - (2,2) element of the stiffness matrix 22 Single element solution 2 1 d c y y 22 2c y 22 d g c 2c y 22 l c Molnár & Gravouil, 2017 Phase‐field method Single element solution analytic y y analytic y Miehe et al., 2010a Parameters How fine should the mesh be? h l / 2 0.5 theoretical d l
Description: