ebook img

An Open Door to Number Theory PDF

297 Pages·2018·2.454 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Open Door to Number Theory

AMS / MAA TEXTBOOKS VOL 39 An Open Door to Number Theory Duff Campbell An Open Door to Number Theory AMS / MAA TEXTBOOKS VOL 39 An Open Door to Number Theory Duff Campbell Providence, Rhode Island Committee on Books Jennifer J. Quinn, Chair MAA Textbooks Editorial Board Stanley E. Seltzer, Editor Bela Bajnok William Robert Green John Lorch Matthias Beck Charles R. Hampton Virginia A. Noonburg Otto Bretscher Jacqueline A. Jensen-Vallin Jeffrey L. Stuart Heather Ann Dye Suzanne Lynne Larson Ruth Vanderpool 2010 Mathematics Subject Classification. Primary 11-01, 11A05, 11A07, 11A15, 11A41, 11A51, 11A55. For additional informationand updates on this book, visit www.ams.org/bookpages/text-39 The cover photograph is courtesy of Kristin McCullough/Moonlight Photography. All illustrationsin this book were made by the author using Mathematica software. Library of Congress Cataloging-in-Publication Data Names: Campbell,Duff,1959–author. Title: Anopendoortonumbertheory/DuffCampbell. Description: Providence, Rhode Island: MAA Press, an imprint of the American Mathematical Society,[2018]|Series: AMS/MAAtextbooks;volume39|Includesbibliographicalreferences andindex. Identifiers: LCCN2017055802|ISBN9781470443481(alk. paper) Subjects: LCSH: Number theory–Textbooks. | AMS: Number theory – Instructional exposition (textbooks, tutorial papers, etc.). msc| Number theory – Elementary number theory – Mul- tiplicative structure; Euclidean algorithm; greatest common divisors. msc | Number theory – Elementary number theory – Congruences; primitive roots; residue systems. msc | Num- ber theory – Elementary number theory – Power residues, reciprocity. msc | Number theory – Elementary number theory – Primes. msc | Number theory – Elementary number theory – Factorization; primality. msc | Number theory – Elementary number theory – Continued fractions. msc Classification: LCCQA241.C27252018|DDC512.7/2–dc23 LCrecordavailableathttps://lccn.loc.gov/2017055802 Colorgraphicpolicy. Anygraphicscreatedincolorwillberenderedingrayscalefortheprinted versionunlesscolorprintingisauthorizedbythePublisher. Ingeneral,colorgraphicswillappear incolorintheonlineversion. Copying and reprinting. Individual readersofthispublication,andnonprofit librariesacting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication ispermittedonlyunderlicensefromtheAmericanMathematicalSociety. Requestsforpermission toreuseportionsofAMSpublicationcontentarehandledbytheCopyrightClearanceCenter. For moreinformation,pleasevisitwww.ams.org/publications/pubpermissions. Sendrequestsfortranslationrightsandlicensedreprintstoreprint-permission@ams.org. (cid:2)c 2018bytheAmericanMathematicalSociety. Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttp://www.ams.org/ 10987654321 232221201918 To my grandfather, LeRoy Archer Campbell Contents 1 The Integers, Z 1 1 Number systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Rings and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 Some fundamental facts about Z and N . . . . . . . . . . . . . . . . 7 4 Proofs by induction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 The binomial theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 The fundamental theorem of arithmetic (foreshadowing) . . . . . . . 26 7 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8 Greatest common divisors . . . . . . . . . . . . . . . . . . . . . . . . 31 9 The Euclidean algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 33 10 The amazing array . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 11 Convergents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 12 The amazing super-array . . . . . . . . . . . . . . . . . . . . . . . . 49 13 The modified division algorithm. . . . . . . . . . . . . . . . . . . . . 56 14 Why does the amazing array work? . . . . . . . . . . . . . . . . . . . 58 15 Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 16 The proof of the fundamental theorem of arithmetic . . . . . . . . . 64 17 Unique factorization in other rings . . . . . . . . . . . . . . . . . . . 68 2 Modular Arithmetic in Z/mZ 71 18 The integers mod m, Z/mZ . . . . . . . . . . . . . . . . . . . . . . . 71 vii viii Contents 19 Congruences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 20 Units and zero-divisors in Z/mZ . . . . . . . . . . . . . . . . . . . . 81 21 Cancellation law in Z/mZ . . . . . . . . . . . . . . . . . . . . . . . . 85 22 Solving linear equations in Z/mZ . . . . . . . . . . . . . . . . . . . . 87 23 Solving polynomial equations in Z/mZ . . . . . . . . . . . . . . . . . 88 24 Solving systems of linear equations in Z/mZ. . . . . . . . . . . . . . 95 25 Lifting roots in Z/pnZ . . . . . . . . . . . . . . . . . . . . . . . . . . 103 26 Wilson’s theorem and its converse . . . . . . . . . . . . . . . . . . . 108 27 Calculating ϕ(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 28 Euler’s and Fermat’s theorems . . . . . . . . . . . . . . . . . . . . . 115 29 The order of an integer modulo m . . . . . . . . . . . . . . . . . . . 118 30 Divisibility tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 √ 3 Quadratic Extensions of the Integers, Z[ d] 127 31 Divisibility in Z[i]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 32 The Euclidean algorithm in Z[i] . . . . . . . . . . . . . . . . . . . . . 130 33 Unique factorization in Z[i] . . . . . . . . . . . . . . . . . . . . . . . 135 √ 34 The structure of Z[ 2] . . . . . . . . . . . . . . . . . . . . . . . . . . 138 √ 35 The Euclidean algorithm in Z[ d] . . . . . . . . . . . . . . . . . . . 140 36 Factoring in Z[i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 37 The primes in Z[i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4 An Interlude of Analytic Number Theory 153 38 The distribution of primes in Z . . . . . . . . . . . . . . . . . . . . . 153 5 Quadratic Residues 157 39 Perfect squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 40 Quadratic residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 41 Calculating the Legendre symbol (hard way) . . . . . . . . . . . . . 167 Contents ix (cid:2) (cid:3) √ 42 The arithmetic of Z[ −2] and the Legendre symbol −2 . . . . . . 169 p 43 Gauss’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 44 Calculating the Legendre symbol (easier way) . . . . . . . . . . . . . 174 √ 45 The arithmetic of Z[ −3] . . . . . . . . . . . . . . . . . . . . . . . . 180 46 The arithmetic of Z[ρ] . . . . . . . . . . . . . . . . . . . . . . . . . . 182 47 Calculating the Legendre symbol (easiest way) . . . . . . . . . . . . 193 48 The Jacobi symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6 Further Topics 203 49 When Z/nZ has a primitive root . . . . . . . . . . . . . . . . . . . . 203 50 Minkowski’s theorem (geometry in the aid of algebra) . . . . . . . . 208 Appendix A Tables 223 Appendix B Projects 233 Bibliography 279 Index 281

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.