ebook img

An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis PDF

2018·7.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis

Geomorphology308(2018)91–106 ContentslistsavailableatScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis YongNiea,⁎,QiaoLiua,JidaWangb,YiliZhangc,YongweiShengd,ShiyinLiue aInstituteofMountainHazardsandEnvironment,ChineseAcademyofSciences,Chengdu,Sichuan610041,China bDepartmentofGeography,KansasStateUniversity,Manhattan,KS66506,USA cKeyLaboratoryofLandSurfacePatternandSimulation,InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China dDepartmentofGeography,UniversityofCalifornia,LosAngeles(UCLA),LosAngeles,CA90095,USA eInstituteofInternationalRiversandEco-security,YunnanUniversity,Kunming,Yunnan650500,China a r t i c l e i n f o a b s t r a c t Articlehistory: Glaciallakeoutburstfloods(GLOFs)areauniquetypeofnaturalhazardinthecryospherethatmayresultincat- Received30November2017 astrophicfatalitiesanddamages.TheHimalayasareknownasoneoftheworld'smostGLOF-vulnerablezones. Receivedinrevisedform2February2018 EffectivehazardassessmentsandriskmanagementrequireathoroughinventoryofhistoricalGLOFeventsacross Accepted2February2018 theHimalayas,whichishithertoabsent.ExistingstudiesimplythatnumeroushistoricalGLOFeventsareconten- Availableonline6February2018 tiousbecauseofdiscrepantgeographiccoordinates,names,oroutbursttime,requiringfurtherverifications.This studyreviewsandverifiesover60historicalGLOFeventsacrosstheHimalayasusingacomprehensivemethod Keywords: Glaciallakeoutburstflood thatcombinesliteraturedocumentations,archivalremotesensingobservations,geomorphologicalanalysis, Remotesensing andfieldinvestigations.Asaresult,threeunreportedGLOFeventswerediscoveredfromremotesensingimages Climatechange andgeomorphologicalanalysis.Elevensuspiciouseventswereidentifiedandsuggestedtobeexcluded.The TheHimalayas propertiesoffiveoutburstlakes,i.e.,Degaco,ChongbaxiaTsho,Geiqu,LemthangTsho,andalakeonTshojoGla- cier,werecorrectedorupdated.Atotalof51GLOFeventswereverifiedtobeconvincing,andtheseoutburstlakes wereclassifiedintothreecategoriesaccordingtotheirstatusesinthepastdecades,namelydisappeared(12),sta- ble(30),andexpanding(9).StatisticsoftheverifiedGLOFeventsshowthatGLOFtendedtooccurbetweenApril andOctoberintheHimalayas.Wesuggestthatmoreattentionshouldbepaidtorapidlyexpandingglaciallakes withhighpossibilityofrepetitiveoutbursts.Thisstudyalsodemonstratestheeffectivenessofintegratingremote sensingandgeomorphicinterpretationsinidentifyingandverifyingGLOFeventsinremotealpineenvironments. ThisinventoryofGLOFswitharangeofcriticalattributes(e.g.,locations,time,andmechanisms)willbenefitthe continuousmonitoringandpredictionofpotentiallydangerousglaciallakesandcontributetooutburst-induced riskassessmentsandhazardmitigations. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction Kattelmann,2003;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal., 2014;Gurungetal.,2017),andChorabariLakein2013,locatedinthe Aglaciallakeoutburstflood(GLOF)isauniquenaturalhazardthat Alaknanda River basin in India (Durga Rao et al., 2014; Das et al., occursinthecryospherewhenamorainedamfailedwithasubsequent 2015).TheHimalayas(Fig.1),occupyingatotalareaof~0.65million suddenreleaseofwaterfromtheglaciallake(Westobyetal.,2014a, km2andcontaining22,800km2glaciers(Bolchetal.,2012;Nieetal., 2014b).HistoricalGLOFsintheHimalayashavecausedcatastrophic 2017),areknownasoneoftheworld'smajorGLOF-vulnerableregions fatalities and destructions in the downstream zones (ICIMOD (The (Quinceyetal.,2005;CarrivickandTweed,2016;Nieetal.,2017).Gla- InternationalCentreforIntegratedMountainDevelopment),2011), cierrecessioninresponsetoclimatewarminghasresultedintheforma- forexample,theoutburstsofCirenmacoin1981,locatedintheSun tionandexpansionofHimalayanglaciallakes(Kangetal.,2010;Nie Koshi River basin in China (Xu and Feng, 1989; Chen et al., 2007; etal.,2013,2017;Songetal.,2017)andincreasedtheriskofGLOFs, Wang et al., 2015a), Dig Tsho in 1985 (Richardson and Reynolds, which deserve increasing attention owing to their potential cata- 2000;Bajracharyaetal.,2007)andTamPokhariin1998,locatedin strophicdamages. Dudh Koshi in Nepal (Xu and Feng, 1989; Mool et al., 2001; AdatabaseofGLOFeventscompiledfromexistingliteratureises- sentialtorevealtheprocessandmechanismofGLOFsforhazardassess- ⁎ Correspondingauthor. ment,mitigation,andconsequentlyriskmanagement.GLOFevents E-mailaddress:[email protected](Y.Nie). havebeenreportedintheBhutanHimalayas(GeologicalSurveyof https://doi.org/10.1016/j.geomorph.2018.02.002 0169-555X/©2017ElsevierB.V.Allrightsreserved. 92 Y.Nieetal./Geomorphology308(2018)91–106 Fig.1.DistributionofhistoricalGLOFsintheHimalayas;thebackgroundimageisfromESRI'sworldbasemap. Bhutan,1999;Komorietal.,2012),inTibet,China(Liuetal.,2014;Yao namingandoccurrencetime(CarrivickandTweed,2016)needtobe etal.,2014),Nepali(Bajracharyaetal.,2008;ICIMOD,2011),andIndian verifiedandpreferablyunified.Alltheaboveissuesimplythatthere- Himalayas(DurgaRaoetal.,2014;Dasetal.,2015)fromliterature, portedGLOFsshouldbefurthervalidated.Theexistingliteraturehow- mediareports,andremotesensingdata.However,asmostGLOFsoc- ever lacks a systematic inventory of GLOFs across the entire curredinremoteandlessinhabitedregions,lowdataavailabilityor Himalayas,suchasoutburstlakes'pastcondition,currentstatus,future quality can cause substantial misunderstandings, especially for the projection,andtheirchronologicalcharacteristics. GLOFeventsthathappenedpriortotheeraofsatelliteremotesensing. AnaccessibleonlinedatabaseofGLOFs,suchasproposedbyVilímek ThedefinitionofGLOFintheHimalayasisstillunderdebate.Forexam- etal.(2014),makesasignificantcontributiontofacilitatinghazardas- ple,somescholarsarguethatadebrisflowthatoccurredon10Aug. sessmentandriskmanagement.Aneffectivemoderntooltomonitor 2007inConaCountyisaGLOFevent(Yaoetal.,2014).However,the andanalyzethehistoricalGLOFsinthelessaccessiblehighmountain originalreferencefocusedonthecausesandpreventioncountermea- areasisprovidedviasatelliteremotesensing,especially,theuseofopti- suresofthedebrisflowhazard(Moetal.,2008).Wesupporttheorigi- calimagessuchastheLandsatimageswithlongarchivalrecordssince nalauthorsinthatthiseventwasadebrisflowhazardinducedbyheavy 1972.Geomorphicevidence,e.g.,V-shapedtrench,hugedebrisdeposits, rainfallratherthanaGLOF.Somestudiesdidnotprovidedetailedspatial anddevastatedriverbedsinaccordancewithremotesensingdata,has locationsofthoselakes(e.g.,longitudeandlatitude);thusreadersdo beenemployedtoidentifyhistoricaloutburstevents(Komorietal., notknowwheretheGLOFsexplicitlyoccurred(XuandFeng,1989; 2012).Thesefeatures,however,couldalsobeformedinothercryo- ICIMOD,2011;Falátková,2016).Otherstudiesevenreportedwronglo- hydrologiceventsratherthanGLOFs.Therefore,cautionmustbepaid cationsofcertainGLOFevents,suchastheJincoevent(Bajracharya whenusingsatelliteobservationsalonetoidentifyaGLOFevent.A etal.,2008;ICIMOD,2011;Liuetal.,2014),whichwaslatercorrected morerigorousmethodforGLOFverificationsrequeststhesynergyof byYaoetal.(2014)toYindapuco.SomesameGLOFeventshavebeen multisource evidence, such as historical documents, field surveys, assignedbydifferentcoordinates,suchastheDegacoevent(Liuetal., long-termsatelliteobservations,andhighresolutionimagearchives 2014;Yaoetal.,2014).Anotherstudy(Komorietal.,2012)confused (e.g.,GoogleEarth)thatcanbetterrevealthehydrogeomorphicpro- theDegacoeventinLuozhaCountywiththePogeTshoeventon23 cessesinducedbydifferentGLOFincidentsacrosstheHimalayas. July 1972 in Suoxian County. An outburst event in 2001 based on ToimproveourunderstandingofGLOFsintheHimalayas,thisstudy multitemporalsatelliteobservationsandourfieldinvestigationwas aimsto(i)constructanup-to-dateGLOFdatabaseacrosstheentire named to Longjiu Tsho (Yao et al., 2014) or Chongbaxia Tsho (Liu Himalayas;(ii)identifymissingGLOFeventsanddistinguishbetween etal.,2016)on6Aug.2000,whichwaspreviouslyreferredtoas‘un- persuadableandunpersuadableeventsusingacombinationofremote known’during2000–2001(Komorietal.,2012).Suchinconsistent sensing and geomorphological analyses;and(iii) reveal thestates, Y.Nieetal./Geomorphology308(2018)91–106 93 characteristicandrecentchangesofoutburstlakes,includingtheirtrig- 3.2.GLOFeventsbefore1990 gersanddamages. Atotalof32GLOFeventsoccurredbefore1990andwerebelievedto bepersuadableaccordingtoourverificationmethods.MostGLOFsoc- 2.Methods curredatelevationsabove4200m.Fourteenoutof32eventshaveex- plicitfloodingdateswhileothersdonot(Table1). WeherecompiledadatabaseofhistoricalGLOFsintheHimalayas Meanwhile,sevenGLOFeventswerevalidatedtobeunpersuaded basedonscientificliterature,reports,medianews,andassessmentsof andthusrecommendedtobeexcludedfromthehistoricalGLOFlist. glaciallakechangesusingarchivalremotesensingobservations(see TheseGLOFevents,i.e.,BarunKholaWest,BarunKholaEast,Chokarma referencesinTable1andTableS1).Collectedprimaryattributesfor Cho,Unnamed1st,Unnamed2nd,Unnamed3rd(Bajracharyaetal., eacheventincludetheoutburstlake'sname,location(region,country, 2008) and Huang Tsho (Komori et al., 2012), were previously andcoordinates),waterlevelandareabeforeoutburst,recentarea(in misidentifiedasGLOFsprimarilyusingsatelliteimagesoraerialphoto- 2015),outburstdate,persuadability,triggers,loss/damages,andarea graphs(ICIMOD,2011;Komorietal.,2012).Inadditiontotheunknown trend.Notallpropertieswereavailableforsomeevents,especiallyfor outburstdatesanddamage,theterminalmorainecollapseswerelikely thoseearlierones. causedbydrainage;anddirectevidencefortheseGLOFeventsislargely Wethendeterminedtheexactcoordinatesofthesourceglaciallake unpersuadable. in each compiled event. Many events missed location information, whileotherswereassignedwitherroneouscoordinates.Undersuchcir- 3.2.1.BarunKholaWestandEast cumstances,welocatedthesourceglaciallakesbycomparingstudies ForBarunKholaWest(Fig.4A),brieflydescribedonlybyICIMOD,la- forthesameeventorlogicalreasoningfromgeographicdescription custrinedepositioncausedbylakelevelfluctuations,cleanV-shaped andspatialdistributionofglaciallakesandtheirsourceglaciers. breach,anddebrisfanwerenotobservedinhighresolutionsatellite Next,wevalidatedeacheventusinggeomorphologicalanalysisand images.IfaGLOFhadoccurred,thefloodwouldhavedevastatedthe remotesensingobservations.Geomorphologicalpropertiesincluding downstreamriverbedsfromthecollapseddam.However,tinyand thecharacteristicsofhydrologicalbasinssuchasarea,drainagenet- crookedriversseemedtobenaturallyformedwithoutanydrasticdam- works,slope,appearanceoflakesandglacierswerepreliminarilyana- ages.ForBarunKholaEast(Fig.4B),notrailofterminalmorainecollapse lyzed for the possibility of GLOFs, and then followed by visual fromthislakewasobserved.Adebrisfananditsupperprovenanceare interpretationofgeomorphicfeaturesaroundeachglaciallakeinre- clear;however,thisgeomorphicfeatureismorelikearainfall-induced motesensingimages,suchasV-shapedtrench,debrisfan,devastation landslide. From Barun Khola East (snow-covered in Fig. 4B) to the downstreamorlacustrinedeposition.Inaddition,areachangesforall breach(~1.4km),nodevastationevidencewasobserved.IfthisGLOF reportedlakeswerealsomonitoredbymulti-temporalsatelliteimages. hadoccurred,avanishedlakebasinwouldhavebeenvisibleinthe High-resolutionGoogleEarthimageryincombinationwithGlacierIn- proglacialarea.Nevertheless,nogeomorphologicaltraceindicatedthe ventoryData(Armstrongetal.,2011;Guoetal.,2015)wereemployed existenceofanoutburstlake. toidentifythegeomorphologicalevidenceforeachhistoricalGLOFsuch asV-shapedtrenchanddebrisfan.Theidentifiedimpossibleevents 3.2.2.ChokarmaCho wereclassifiedasunpersuadable. ChokarmaCho(Fig.4C),locatedbetweenLhotseGlacierandLhotse Owingtolimitedavailabilityofsatelliteimagerybefore1990,pre- SharGlacier,wasalateralmoraine-dammedlake(closetoImjaLake) 1990GLOFeventswereprimarilyverifiedbyliteraturereviewandgeo- anddesiccatedbefore1975(theearliestavailableLandsatobservation). morphologicalcharacteristicsinterpretedfromimageriesacquiredaf- Anunpavedfootpathpassingthislakewasobviouslyseenfromthe terward, including V-shaped trench, debris fan, devastation GoogleEarthimageryacquiredon3Dec.2016,butdevastationdown- downstream,andlacustrinedeposition.Post-1990GLOFeventswere stream and V-shaped breaches that indicate dam failure were not verifiedbyarchivalLandsat5–8imageries,GoogleEarthimages,and visible. insituphotographicinvestigations.Theprimaryevidenceincludesob- viousshrinkageofthelakeareaandconsequentfloodsedimentation 3.2.3.Unnamed1st,Unnamed2nd,andUnnamed3rdevents bycomparingimageriesbeforeandafterreportedoutbursts.Totrack The knowledge available on the three anonymous events, the dynamics of glacial lakes after outburst, all source lakes were i.e.,Unnamed1st,Unnamed2nd,andUnnamed3rd,isverylimited. mappedusingavailablearchivedLandsatimagesuntilpresent. TheUnnamed1steventwaslabeledas12Ninadistributionmapof Finally,weinspectedallrapidlyshrinkingordisappearedglacial NepaleserecordedGLOFs(ICIMOD,2011),whichwassupposedtoorig- lakes≥0.05km2toidentifyaGLOFusingtheHimalayanglaciallakein- inatefromamoraine-dammedlake(Fig.4D).Theindicatedlakewas ventories(Nieetal.,2017)atfiveepisodes(1990,2000,2005,2010, dammedbythedownstreammoraineofanotherglacier,whichwassta- and2015)withaminimummappingunitofnineLandsatpixelsor blebetween29Oct.1976and28Sep.2015.Geomorphologicalanalysis 0.0081km2.AnumberofunreportedGLOFswereidentifiedandlabeled fromhighresolutionimagesclearlyindicatedthatthedepositionfan asnewlyfoundGLOFevents. wasoriginatedfromaglacierontheupperleftsideofthewatershed ratherthanthelake12N.Theabovegeomorphologicalcharacteristics donotsuggestthatthe12NhaslikelyexperiencedaGLOFthusfar. 3.HistoricalGLOFeventsacrosstheHimalayas TheUnnamed2ndevent(marked13NintheICIMOD,2011report) isalsoimpossiblebecauseoflackofanyGLOFgeomorphicfeatures 3.1.DistributionofGLOFeventsintheHimalayas (Fig.4E).ThelocationoftheUnnamed2ndlakewasfullycoveredby glaciericeintheLandsatimageacquiredon29Oct.1976.Aglacial Atotalof62GLOFeventsinitiatedfrom56glaciallakes(Figs.1and2, lakewasobservedon19Oct.1988withanareaof0.05km2andgradu- Table1)intheHimalayaswereverified,includingthreenewlyidenti- allyincreaseduntil2013.Then,asuddenexpansionoccurredin2014, fied events in this study. All GLOF events were classified into andthelakeareareached0.23km2on28Sep.2015.Theevolutionof unpersuadable (11) and persuadable events (51). The persuadable thislakeanditsunhindereddrainagesystemstronglyimplyalowpos- eventswereprimarilylocatedin theeastern(26)andcentral(25) sibilityofahistoricalGLOFevent.Therecentlyrapidexpansionofthis HimalayasoradministrativelyinChina(28),Nepal(8),Bhutan(13), glaciallakeisstoringmassivewatervolumethatcouldpossiblycause andIndia(2).Theirelevationsrangedfrom3669to5527mwitha considerabledamageincaseofoutburst.Thislakedeservesclosemon- meanof4831m(Fig.3). itoringinthefuture. 94 Y.Nieetal./Geomorphology308(2018)91–106 Table1 HistoricalGLOFeventsintheHimalayas(pleaseseeTableS1forcompleteattributes). Order Name Persuadability Dateof Location Reference outburst 1 Taraco Yes 1935-8-28 CHN XuandFeng,1989;Chenetal.,2007;Bajracharyaetal.,2008;ICIMOD,2011; Liuetal.,2014 2 QiongbihemaTsho Yes 1940-7-10 EHS XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014; Gurungetal.,2017 3 Lureco Yes 1950s EHN Tongetal.,2013;Yaoetal.,2014 4 SangwangTsho Yes 1954-7-16 EHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014 5 AlakeonCuoalongGlacier Yes 1955–1966 EHN Komorietal.,2012 6 TarinaTsho Yes 1957 EHS GeologicalSurveyofBhutan,1999;Bajracharyaetal.,2008;ICIMOD,2011; Komorietal.,2012 7 AlakeonLunanaGlacier Yes 1960s EHS GeologicalSurveyofBhutan,1999;Komorietal.,2012 8 Cirenmaco1st Yes 1964 CHS XuandFeng,1989;Chenetal.,2007;Bajracharyaetal.,2008;ICIMOD,2011; Liuetal.,2014;Gurungetal.,2017 9 LongdaTsho Yes 1964-8-25 CHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014; Gurungetal.,2017 10 Gelhaipuco Yes 1964-9-21 CHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014; Gurungetal.,2017 11 Unnamed4th Yes 1966–1974 EHS AgetaandIwata,1999;Komorietal.,2012 12 Ayaco Yes 1968-8-15 CHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014 13 Ayaco Yes 1969-8-17 CHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014 14 Ayaco Yes 1970-7-12 CHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014 15 NareLake Yes 1977-9-3 CHS Mooletal.,2001;Kattelmann,2003;Bajracharyaetal.,2008;ICIMOD,2011; Gurungetal.,2017 16 NagmaPokhari Yes 1980-6-23 CHS Mooletal.,2001;Bajracharyaetal.,2008;ICIMOD,2011 17 Zharico Yes 1981-6-24 EHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Yaoetal.,2014 18 Cirenmaco2nd Yes 1981-7-11 CHS XuandFeng,1989;Chenetal.,2007;Bajracharyaetal.,2008;ICIMOD,2011; Liuetal.,2014;Gurungetal.,2017 19 Yindapuco Yes 1982-8-27 CHN XuandFeng,1989;Bajracharyaetal.,2008;ICIMOD,2011;Liuetal.,2014 20 DigTsho Yes 1985-4-4 CHS Mooletal.,2001;Bajracharyaetal.,2007,2008;ICIMOD,2011;Gurungetal.,2017 21 Chhubung Yes 1991-7-12 CHS Mooletal.,2001;Bajracharyaetal.,2008;ICIMOD,2011;Wangetal.,2012; Westobyetal.,2014b 22 UpperLangbuTsho Yes 1992 CHS Thisstudy 23 ZanglaTsho Yes 1994 CHN Thisstudy 24 LuggyeTsho Yes 1994-10-7 EHS Fujitaetal.,2008;Bajracharyaetal.,2008;ICIMOD,2011;Gurungetal.,2017 25 Xiaga Yes 1995-5-26 EHN Lietal.,1995;Yaoetal.,2014 26 Zanaco Yes 1995-6-7 CHN Bajracharyaetal.,2008;ICIMOD,2011;Yaoetal.,2014 27 KongyangmiLaTsho Yes 1997 EHS Thisstudy 28 GangriTshoIII Yes 1998 EHS Komorietal.,2012 29 TamPokhari Yes 1998-9-3 CHS Mooletal.,2001;Kattelmann,2003;Bajracharyaetal.,2008;ICIMOD,2011; Gurungetal.,2017 30 ChongbaxiaTsho Yes 2001 EHN Komorietal.,2012;Yaoetal.,2014;Liuetal.,2016;Thisstudy 31 Jialongco1st Yes 2002-5-23 CHS Chenetal.,2007;Liuetal.,2014 32 Jialongco2nd Yes 2002-6-29 CHS Chenetal.,2007;Liuetal.,2014 33 AsupraglaciallakeofTshojoGlacier Yes 2009-4-29 EHS Komorietal.,2012 34 Geiqu Yes 2010 CHN Yaoetal.,2014 35 ChoradariLake Yes 2013-6-17 CHS Dasetal.,2015;DurgaRaoetal.,2014 36 AsupraglaciallakeofLotseGlacier Yes 2015-5-25 CHS Rounceetal.,2017 37 LemthangTsho Yes 2015-6-28 EHS Gurungetal.,2017 38 AsupraglaciallakeofLotseGlacier Yes 2016-6-12 CHS Rounceetal.,2017 39 GongbatongshaTsho Yes 2016-7-5 CHS BhoteKoshiPowerCompanyPrivateLimited(BKPC)www.bhotekoshi.com.np;Thisstudy 40 Machhapuchhre Yes 450yearsago CHS Mooletal.,2001;Bajracharyaetal.,2008;ICIMOD,2011 41 ChubdaTsho Yes Before1956 EHS Komorietal.,2012 42 TarikhaLake Yes Before1956 EHS Komorietal.,2012 43 Degaco Yes Before1966 EHN Komorietal.,2012;Thisstudy 44 JhomohariSouth Yes Before1966 EHS Komorietal.,2012 45 JichudrakeNorth1st Yes Before1966 EHN Komorietal.,2012 46 JichudrakeNorth2nd Yes Before1966 EHN Komorietal.,2012 47 SimdongGoiTsho Yes Before1966 EHS Komorietal.,2012 48 Unnamed5th Yes Before1966 EHS Komorietal.,2012 49 UpperChokhamTsho Yes Before1966 EHS AgetaandIwata,1999;Komorietal.,2012 50 UpperJiejiuTsho Yes Before1966 EHN Komorietal.,2012 51 UpperShegongTsho Yes Before1966 EHN Komorietal.,2012 52 BarunKholaEast No – CHS Bajracharyaetal.,2008;ICIMOD,2011 53 BarunKholaWest No – CHS Bajracharyaetal.,2008;ICIMOD,2011 54 ChokarmaCho No – CHS Bajracharyaetal.,2008;ICIMOD,2011 55 HuangTsho No – EHN Komorietal.,2012 56 Unnamed1st No – CHS Bajracharyaetal.,2008;ICIMOD,2011 57 Unnamed2nd No – CHS Bajracharyaetal.,2008;ICIMOD,2011 58 Unnamed3rd No – CHS Bajracharyaetal.,2008;ICIMOD,2011 59 Degaco No 2002-9-18 EHN Liuetal.,2014;Yaoetal.,2014 60 KabacheLake No 2003-8-15 CHS Bajracharyaetal.,2008;ICIMOD,2011 61 KabacheLake No 2004-8-8 CHS Bajracharyaetal.,2008;ICIMOD,2011 62 Zhemaico No 2009-7-3 EHN Liuetal.,2014;Yaoetal.,2014 Notes:CentralHimalayaNorth(CHN),CentralHimalayaSouth(CHS),EasternHimalayaNorth(EHN),andEasternHimalayaSouth(EHS). Y.Nieetal./Geomorphology308(2018)91–106 95 Before 1990: Repeated outburst: 32 (29) Ayaco (triple), Cirenmaco Repeated outburst: Disappeared: A supraglacial lake of Persuadable: Repeated outburst: 12 (11) After 1990: Lotse Glacier 51 events 19 (17) Jialongco, A supraglacial lake of Lotse Glacier (46 lakes) Expanding: Repeated outburst: 9 (7) Cirenmaco, Jialongco Before 1990: Stable: Repeated outburst: 7 (7) 30 (28) Ayaco (triple) After 1990: Repeated outburst: 4 (3) Kabache Lake Fig.2.Outburstnumbersofeventsandlakesforeachscenario. AsharpoutletanddebrisfanassociatedwiththeUnnamed3rd geomorphologicalanalysis.NeitherdoesadebrisfanrelatedtoaGLOF event(markedas14NintheICIMOD,2011report)mightappearthere- eventexistgivenourmeticulousinspectionfromfieldinvestigations sultofaGLOF.Theareaofthisriverbasinis~2.0km2,whichwasusually andsatelliteimages.Althoughwehaveconfirmednopreviousoutburst coveredbysnowbasedonsatelliteobservations(Fig.4F).Thelackof ofHuangTsho,thislakeshouldbecloselymonitoredinthefutureowing highqualityimageslimitsourcapabilitytoconfirmwhetheralake toitshighrisk(Wangetal.,2012).Itexpandedrapidlyfrom1991(1.04 formedandoutburstoccurredinthepast.However,theGLIMSglacier km2)to2015(1.78km2).Currently,aV-shapedtrenchformedatthe inventorybasedona1966referencemapdidnotshowaglacierin outlet,andtheelevationdifferencefromthelakeleveltothedown- thisbasin(Fig.4G).Steepbasintopographywasalsonotfavorableto stream river bed was N100m. In case of failure, outburst flooding formalake.WebelievethatthisUnnamed3rdeventisnotpersuadable fromHuangTshomaycausecatastrophicdamagestothedownstream basedontheaboveevidence. regionsbecauseofitshighpotentialfloodvolume(Fujitaetal.,2013). 3.2.4.HuangTsho 3.3.GLOFeventsafter1990 AnoutburstfloodfromHuangTshowasfirstreportedbyKomori etal.(2012)basedona1966Coronaphoto.Theydescribedthattheout- 3.3.1.NewlyfoundhistoricalGLOFevents burstfloodoccurredbefore1966byoverflowingfroma400-m-wide WeidentifiedthreepreviouslyundocumentedGLOFevents(Fig.5). moraine dam on the right side. The lake water currently outflows ThefirstGLOFevent(86.447217°E,27.929294°N)islocatedwithinthe throughtheleftsideofthemorainewithoutaclearV-shapedvalley SunKosiwatershedandatthetownofRongxia,Tibet,China.Theasso- (Komorietal.,2012).However,thisGLOFeventhasneverbeenre- ciatedlake,UpperLangbuTsho,isnamedaftertheclosestLangbuTsho portedorrecorded.WecarriedoutafieldinvestigationontheHuang withthesamemotherglacier(GLIMSglac_idofG086454E27926N). TshoinOctober2016toverifytheGLOFevent(Fig.4H).Ourobserva- Basedonacontinuoussatellitetrackingofthisglaciallake(Fig.4A), tionsshowthattheso-calledbreachoftheGLOFattherightlateralmo- theoutburstdatewasbetween22Sep.1992and17Nov.1992.The raineisprobablyaphysicalresultofgravitatederosion(Fig.4I).Several lakeareaincreasedrapidlyfrom0.06km2in1989to0.24km2on22 gulliesareclearovertheunstablelateralmoraineinthephotographs, Sep.1992,followedbyasharpshrinkageaftertwomonthson17Nov. whichwerepossiblycausedbyprecipitation,meltedsnow,and/orbur- 1992 (0.06km2), and then remained relatively stable until 2015. iedice.Theheadpartofthelargestgullyisjustabout40mwide,and Thelakewasconnectedtotheglacierterminusbeforeitsoutburstin this gully is ~350m long, which seems to bea trench from Huang 1992anddetachedafter2009(Fig.5AandD).Iceavalanchepossibly Tsho(Fig.4JandK).Butactually,thehighestlakelevelneverreached triggered this GLOF given a steep ice cliff and a rapid retreat of the head of this gully in accordance with the photographic and theglacier. The second GLOF event (82.118101°E, 30.355574°N) is located withintheMaquanRiverbasin,Tibet,China.ThislakeisentitledZangla TshoinaccordancewiththedownriverZanglaqu.Satelliteobservations suggestthatZanglaTshoGLOFoccurredbetweenAprilandOctoberin 1994(Fig.5BandE).ZanglaTshokeptstablebetween10Oct.1988 and27Dec.1993withanareaof0.21km2andrapidlyshrunktoa verysmalllake(0.01km2on27Oct.1994)aftertheoutburst.Lacustrine depositionisclearlyobservedinahighresolutionimageon2Dec.2005. Thelakewasalreadydisconnectedfromitsupstreamglacier(GLIMS glac_idofG082129E30336N)in1988byatleast~400m.Thecleangla- cierupstreamretreatedfastfrom1988to2015.Thetrailoflandslideor rockfallisnotobservedaroundtheglaciallake.Aglaciallakewaslo- cated atthe upstream tributary andshrunk by 17.6%from 27 Dec. 1993to27Oct.1994.Drainagefromthislaketothefloodeddown- streamlakeappearsevidentinthehighresolutionimage(Fig.4E). Thewaterinflowfromtheupstreamlakelikelycausedthedamfailure ofthedownstreamlakeandtriggereditsoutburstflood. Thethirdevent(KongyangmiLaTsho,88.782077°E,27.901247°N)is locatedinTistabasinandoccurredbetweenAprilandOctoberin1997 (Fig.5CandF).Thislakewas0.24km2on14June1990,expandeddra- maticallyto0.55km2on8Nov.1991,andgenerallystabilizedbetween 1991and1996.Aftertheoutburstin1997,theglaciallakeremainedsta- Fig.3.AltitudinaldistributionsofHimalayanhistoricalGLOFevents. bleuntil2015(~0.28km2).Thefrontaledgeofthisglaciallakeretreated 96 Y.Nieetal./Geomorphology308(2018)91–106 Fig.4.GeomorphiccharacteristicsneartheunpersuadableGLOFeventsbasedonGoogleEarthimages(A–H)andinsituphotos(I–K). byN200maftertheoutburstcausedbythelakeleveldrop.Theleft lakewasconnectedtotheWenjiaGlacier(Fig.6C).Nogeomorphological trailingedgeofthisglaciallakeretreatedbyN120mandadvancedde- evidencecouldbefoundfromremotesensingimagerytoverifyaGLOF positionasaresultofupstreamiceavalanche.Itismostlikelythatanice nearthislake.WethereforeconcludethatthereportaboutthisGLOF avalancheoccurredontheleftsideofthemainglacier(GLIMSglac_idof eventinLiuetal.(2014)isquestionable. G088819E27930N) and that the mass movement of the ice Inanotherstudy,researchersthoughtthatDegacowaslocatedat avalancheplungedintotheglaciallake(Fig.2F),whichtriggeredthis 28.33°N,90.67°EaccordingtoliteraturedescriptionsandGoogleEarth GLOFevent. images,whichburston18Sep.2002(Yaoetal.,2014).Thislocationof DegacowasthesameasanotherGLOFeventcalledPogeTshothat 3.3.2.Corrected/updatedGLOFevents wasbelievedtooccurbefore1966inaccordancewithaCoronasatellite Erroneousgeographiccoordinatesoroccurrencetimesaremislead- photo(Komorietal.,2012).WeagreewithKomorietal.(2012)thatthis ingandpreventresearchersfromunfoldingtheprocessormechanism lakeburstbefore1966(asshowninFig.5D).However,Komorietal. ofaGLOFevent.Thisstudycorrectsorupdatesthepreviouslyreported namedthislakePogeTshobecauseoftheGLOFeventin1972reported characteristicsofthefollowinghistoricalGLOFevents. byXuandFeng(1994).Otherstudies(XuandFeng,1989,1994;Liu etal.,2014;Yaoetal.,2014)havedemonstratedthatPogeTshowaslo- 3.3.2.1.Degaco.Degaco(Fig.6)wasfirstreportedtobelocatedinLuoza catedinSuoxianCounty(notinLuozaCounty),whichcausedafloodon County(28°07′25″N,90°34′01″E)(Liuetal.,2014)whereapro-glacial 23July1972.Wehereverifythatthecorrectnameofthislaketobe Y.Nieetal./Geomorphology308(2018)91–106 97 Fig.5.Landsatobservationsoflakedynamics(A–C)andgeomorphiccharactersfromGoogleEarthimages(D–F)forthethreenewlyfoundGLOFevents. DegacoaslabeledinGoogleEarthandTiandituprovidedbytheNational 3.3.2.2.ChongbaxiaTsho.AccordingtoKomorietal.(2012),ananony- AdministrationofSurveying,MappingandGeoinformation,China.Did mouslakewasobservedtoexperienceanoutburstfloodfromLandsat thislakebursttwice(i.e.,before1996andin2002)?Theanswerisno imagesacquiredbetween17Nov.2000and20Nov.2001(Komori givenourinterpretationofarchivalimageryandfieldsurvey.Evident etal.,2012).Otherstudies(Yaoetal.,2014;Liuetal.,2016)thought downstreamsurfacedamagewasnotobservedinimagesacquiredbe- thatthiseventoccurredon6Aug.2000.Thesourcelakeofthisevent tween2000and2002(Fig.6A).Areasofthislake(~1.12km2)remained wascalledasLongjiuTshoinYaoetal.(2014)andChongbaxiaTshoin stablefrom2000to2015.Thefreshgravelsandsandsontheolddebris Liu et al. (2016). Our analysis confirms thatthis event occurred in fanstaysimilarinthephotostakenin1966andin2016(Fig.6DandE). 2001basedonarangeofLandsatobservations,specificallybetween Atthispoint,theoriginalglaciallakethatcausedafloodon18Sep.2002 5Feb.and4Nov.2001(Fig.7A).AGLOFeventisusuallynamedafter cannotbeconfirmed.Thus,weverifythataGLOFinDegacomightonly its initial outburst lake. Therefore, we here name this event as occurbefore1966. ChongbaxiaTshooutburstflood(Fig.7B). 98 Y.Nieetal./Geomorphology308(2018)91–106 Fig.6.UpdatingthecharacteristicsofDegacoGLOFeventusingLandsatimages(A),GoogleEarth(B,C),photos(D)modifiedfromKomorietal.(2012)andourfieldphoto(E). 3.3.2.3.Geiqu.TheoutburstfromLakeGeiquwasfirstreportedbyYao becauseofasuccessfulimplementationofanearlywarningsystem etal.(2014)basedontheirfieldsurveysin2009and2011.Thelake (Gurungetal.,2017). areabeforeoutburstwasestimatedtobe0.05km2,andtheoutburstoc- ThelocationofthiseventwasfirstidentifiedbytheJapanAerospace curredbetween24Juneand28July2010usingHuanjing(HJ)1A/Bim- ExplorationAgency(JAXA)inashorttimeusingPhasedArraytypeL- agery, which was possibly triggered by intensive precipitation or bandSyntheticApertureRadar-2(PALSAR-2)dataandAdvancedLand outflowfromtheupperlake(Yaoetal.,2014).Wehereprovideaddi- ObservingSatelliteimagery(Nagaietal.,2016).JAXAsharedtheirdoc- tionalremotesensingevidencetosupportthiseventasaV-shaped umentandlakeextentdataontheirwebsite(http://www.eorc.jaxa.jp). breach,freshdebrisdeposit,anddestroyedroadswereclearlyobserv- LamthangTshowasbelievedtoundergoaremarkableexpansionfrom8 ableinFig.7CandD.Thedamageofthiseventwasminorfromitslim- Mar.to23Apr.2015andaremarkableshrinkagefrom23Apr.to2July itedfloodingvolume.Twoglaciallakesareobservedinthisbasin.One 2015(Nagaietal.,2016).However,long-termLandsatobservations lakehasacliffyedge(~70mhigh)andwasconnectedtoaglacierup- showthatLemthangTshoshrankfrom24Dec.1987to8Mar.2015,al- stream,whiletheotherwasmoraine-dammedanddisconnectedfrom thoughthelakesizeremainedrelativelystablebetween1989and2015 theglacier.Glacierswithatotalareaof3.18km2weredistributedin (Fig.8)withanaverageareaof0.055km2.Fromanotherstudy(Gurung theupriverbasin.Thehorizontaldistancebetweenthesetwoglacial etal.,2017),apicturetakeninMay2015showsthatLemthangTshoex- lakesis340m.Thedownstreamglaciallakewaslabeledastheinitial hibitedanormalextentcomparedwithLandsatextractedwaterextent outburstlakeinYao'setal.(2014)study. beforetheGLOF.AnotherpicturedemonstratesthatLemthangTshodis- appearedinlateJuly2015(Gurungetal.,2017).Suchevidencereveals 3.3.2.4. Lemthang Tsho. A GLOF event on 28 June 2015 from the thatLemthangTsho'schangeswereverycomplex. LemthangTsho(alsoknownasMemariTsho)wasreported(Orlove, 2016;Shresthaetal.,2016).Thisfloodwashedawayseveralbridges 3.3.2.5.OutburstofasupraglaciallakeonTshojoGlacier.Komorietal. andcausedsomemajorlandslidesdownstreambutwithoutanyfatality (2012)reportedasupraglaciallakeoutburstcaseassociatedwiththe Y.Nieetal./Geomorphology308(2018)91–106 99 Fig.7.UpdatingtheChongbaxiaTshoandGeiquGLOFeventsusingLandsat(A)andGoogleEarthimagery(B–D). TshiojoGlacieron29Apr.2009.Thiseventdidnotcausemuchdamage lakesintheredboxofFig.9A,intersectedwiththewatersurfaceof becauseofitslimitedfloodvolumeof500thousandm3recordedata thesupraglaciallakeson24Apr.2009,rapidlyfluctuatedfrom1988to hydrologicalgaugeinthePhoChuRiver.Floodwaterwassupposedto 2015;andabruptshrinkageofthesesupraglaciallakeswasobserved bedrainedfromasupraglaciallakeonthelowerpartoftheTshojoGla- atleasttwiceonthesamepartoftheTshojoGlacier(Fig.9B).Thisfluc- cier,accordingtofieldsurveyandsatelliteimages(Fig.9A).Thestudyof tuationrevealsthecomplexityofsupraglaciallakeevolutionprocesses. Komorietal.(2012) posedahypothesisthatleakingwaterofthat GLOFsresultingfromsupraglaciallakesalwayshaveacloserelationship supraglaciallakegushedoutatthelowerendoftheTshojoGlaciervia withenglacialorsubglacialdrainagesystemsfortheirlimitedwatervol- englacial or subglacial channels and formed some sand and gravel ume.Thisimpliesthatthewholeprocessofanoutburstoriginatedfrom moundsaswellasanontypicaldebrisfanaroundtheoutlet(Komori a supraglacial lake via englacial and subglacial drainage systems is etal.,2012). rathercomplexandstillneedstobefurtherexplored. Changesofsupraglaciallakesfromspillwayorcoalescence,includ- ingseasonalemergence,disappearanceandexpansion,canbehighly 3.3.3.UnpersuadableGLOFevents dramaticintheHimalayas(Bennetal.,2001;Gardelleetal.,2011; Fourpost-1990floodeventsfromKabacheLake(Bajracharyaetal., Watsonetal.,2016;Nieetal.,2017).Thetotalareaofsupraglacial 2008; ICIMOD, 2011), Degaco (analyzed in Section 3.3.2.1) and Fig.8.ArealchangeoftheLemthangTshousingLandsatimages(between24Dec.1987and8Mar.2015)andPALSAR-2data(23Apr.2015). 100 Y.Nieetal./Geomorphology308(2018)91–106 Fig.9.LocationobservedfromGoogleEarth(A)andarealchange(B)offloodedsupraglaciallakesontheTshojoGlacier(redbox). Zhemaico (Liu et al., 2014; Yao et al., 2014) were verified to be ofmorainecollapsewithoutanydamage(ICIMOD,2011).Although unpersuadableGLOFs. exactlatitudeandlongitudecoordinateswerenotprovidedinthereport, KabacheLakewassuccessfullyfoundfromamapofGLOFeventsinNepal 3.3.3.1.KabacheLake.TwoGLOFeventsfromKabacheLakewerere- (Fig.10A).AnevolutionofKabacheLakeandthedamageofthedown- portedtooccuron15Aug.2003and8Aug.2004respectivelyasaresult streamvalleywereclearlyrecordedbyaseriesofLandsatimagesfrom Fig.10.LocationsfromGoogleEarthimages(A–C)andLandsat-derivedarealchanges(D)forKabacheandZhemaico.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.