ebook img

An Introductory Course of Particle Physics PDF

806 Pages·2014·5.822 MB·English
by  PalPalash B
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introductory Course of Particle Physics

Physics P For graduate students unfamiliar with particle physics, An Introduc- A A tory Course of Particle Physics teaches the basic techniques and n A I c fundamental theories related to the subject. It gives students the R n ntroductory ourse of I competence to work out various properties of fundamental particles, n T PARTICLE such as scattering cross-section and lifetime. The book also gives a t r lucid summary of the main ideas involved. I o C d In giving students a taste of fundamental interactions among ele- L u mentary particles, the author does not assume any prior knowledge c PHYSICS E of quantum field theory. He presents a brief introduction that sup- t o plies students with the necessary tools without seriously getting into P r the nitty-gritty of quantum field theory, and then explores advanced y topics in detail. The book then discusses group theory, and in this H c case the author assumes that students are familiar with the basic Y o P B. P definitions and properties of a group, and even SU(2) and its repre- u AlAsh Al sentations. With this foundation established, he goes on to discuss S r s representations of continuous groups bigger than SU(2) in detail. I e C o The material is presented at a level that MSc and PhD students can f understand, with exercises throughout the text at points at which S performing the exercises would be most beneficial. Anyone teaching a one-semester course will probably have to choose from the topics covered, because this text also contains advanced material that might not be covered within a semester due to lack of time. Thus it provides a teaching tool with the flexibility to customize the course to suit your needs. PP AA ll K22084 K22084_cover.indd 1 A I c n ntroductory ourse of PARTICLE PHYSICS TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk A I c n ntroductory ourse of PARTICLE PHYSICS P B. P AlAsh Al sAhA InstItute of nucleAr PhysIcs KolKAtA, IndIA CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20140528 International Standard Book Number-13: 978-1-4822-1699-8 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a photo- copy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To Lincoln Wolfenstein Whose inspiration has guided me not only through my PhD thesis but throughout my life TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents List of Figures xvii List of Tables xxi Preface xxiii Notations xxvii 1 Scope of particle physics 1 1.1 Whatareelementaryparticles? . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Inventory ofelementaryfermions . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Whichproperties? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Fundamental interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Highenergyphysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Relativityandquantum theory . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 Naturalunits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.8 Planofthebook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Relativistickinematics 16 2.1 Lorentztransformationequations . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Vectors andtensorsonspacetime . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Velocity,momentum andenergy . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Invariances andconservation laws . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Kinematicsofdecays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6.1 Lifetimeandtimedilation. . . . . . . . . . . . . . . . . . . . . . . 25 2.6.2 Two-bodydecays. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.3 Three-bodydecays . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7 Kinematicsofscatteringprocesses . . . . . . . . . . . . . . . . . . . . . . . 31 2.7.1 Center-of-massframe . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7.2 Fixed-targetframe . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Symmetries and groups 35 3.1 Theroleofsymmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Grouptheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Examplesandclassification. . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Parametersandgenerators . . . . . . . . . . . . . . . . . . . . . . 42 3.4.2 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5.1 Matrixanddifferentialrepresentations . . . . . . . . . . . . . . . . 45 3.5.2 Irreduciblerepresentations . . . . . . . . . . . . . . . . . . . . . . 48 vii viii Contents 3.5.3 Kronecker productofrepresentations . . . . . . . . . . . . . . . . 49 3.5.4 Decompositionunderasubgroup . . . . . . . . . . . . . . . . . . . 51 3.6 Lorentzgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.6.1 Generators andalgebra . . . . . . . . . . . . . . . . . . . . . . . . 52 3.6.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.3 Extended Lorentzgroupanditsrepresentations . . . . . . . . . . 56 3.7 Poincar´egroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 A brisk tour of quantum field theory 61 4.1 Motivatingquantum fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Planewavesolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.1 Scalarfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.2 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.3 Diracfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 MakingLorentzinvariantswithfields . . . . . . . . . . . . . . . . . . . . . 75 4.4.1 Invariants withscalarandvector fields. . . . . . . . . . . . . . . . 75 4.4.2 Invariants involvingDiracfields . . . . . . . . . . . . . . . . . . . 75 4.4.3 Finalrecipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5 Lagrangians forfreefields . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Noether currentsandcharges . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.7 Quantum fieldsasoperators . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.8 States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.9 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.10 FromLagrangiantoFeynmanrules . . . . . . . . . . . . . . . . . . . . . . 90 4.10.1 Externallines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.10.2 Internal lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.10.3 Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.10.4 Otherfactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.10.5 Feynmanamplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.11 Calculationofdecayrates . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.11.1 Generalformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.11.2 Two-bodydecays. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.11.3 Three-bodydecays . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.12 Calculationofcross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.12.1 Generalformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.12.2 Illustrativeexample . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.12.3 Mandelstamvariables . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.13 Differentialdecayratesandcross-sections. . . . . . . . . . . . . . . . . . . 105 4.13.1 AngulardistributionintheCMframe . . . . . . . . . . . . . . . . 105 4.13.2 Invariantformofangulardistribution . . . . . . . . . . . . . . . . 107 4.13.3 AngulardistributioninFTframe . . . . . . . . . . . . . . . . . . 108 4.13.4 Otherdifferentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.14 Feynmandiagramsthatdonotrepresentphysicalamplitudes . . . . . . . 110 5 Quantum electrodynamics 112 5.1 Gaugeinvariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1.1 Globalphasesymmetry . . . . . . . . . . . . . . . . . . . . . . . . 112 5.1.2 Localsymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.1.3 Chargeconservation . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2 Interaction vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3 Elasticscatteringatsecondorder . . . . . . . . . . . . . . . . . . . . . . . 119 5.3.1 Electron–electron scattering. . . . . . . . . . . . . . . . . . . . . . 119 5.3.2 Electron–positronscattering . . . . . . . . . . . . . . . . . . . . . 124 5.3.3 Comptonscattering . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.4 Inelasticscatteringatsecondorder . . . . . . . . . . . . . . . . . . . . . . 130 5.4.1 Paircreationandpairannihilation . . . . . . . . . . . . . . . . . . 130 Contents ix 5.4.2 Muonpairproduction . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.5 ScalarQED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.6 Multi-photonstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.6.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.6.2 Two-photonstates . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.6.3 Three-photonstates . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.7 Higher-ordereffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.7.1 Electromagnetic formfactors . . . . . . . . . . . . . . . . . . . . . 138 5.7.2 Formfactorsinnon-relativisticlimit . . . . . . . . . . . . . . . . . 141 5.7.3 Vertexfunctionatone-loop . . . . . . . . . . . . . . . . . . . . . . 145 5.7.4 Anomalousmagneticmoment. . . . . . . . . . . . . . . . . . . . . 148 6 Parity and charge conjugation 150 6.1 Discretesymmetriesinclassicalelectrodynamics . . . . . . . . . . . . . . . 150 6.2 Paritytransformationoffields . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.2.1 ParityinvarianceofaLagrangian. . . . . . . . . . . . . . . . . . . 151 6.2.2 Freescalarfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.2.3 Freephotonfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2.4 Freefermionfields . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2.5 Interacting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.3 Chargeconjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3.1 Natureofthetransformation . . . . . . . . . . . . . . . . . . . . . 158 6.3.2 Freebosonicfields . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.3.3 Freefermionfields . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3.4 Interacting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.4 Paritypropertiesofparticlestates . . . . . . . . . . . . . . . . . . . . . . . 164 6.4.1 Intrinsicparityforbosons . . . . . . . . . . . . . . . . . . . . . . . 164 6.4.2 Intrinsicparityforfermionsandantifermions . . . . . . . . . . . . 165 6.4.3 Orbitalparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.5 Chargeconjugation propertiesofparticlestates . . . . . . . . . . . . . . . 169 6.6 Multi-photonstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.7 Positronium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.8 Parityassignmentofdifferentparticles . . . . . . . . . . . . . . . . . . . . 175 6.9 Signatureofparityviolation . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.9.1 Correlationsinexperiments . . . . . . . . . . . . . . . . . . . . . . 177 6.9.2 Parityviolatingtransitions . . . . . . . . . . . . . . . . . . . . . . 180 6.9.3 Parityviolatingcouplingwithexternal fields . . . . . . . . . . . . 181 6.9.4 Connection withfieldtheory . . . . . . . . . . . . . . . . . . . . . 182 6.10 Consequences ofchargeconjugationsymmetry . . . . . . . . . . . . . . . . 184 6.11 CPsymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7 Time-reversal and CPT symmetries 188 7.1 Anti-unitaryoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.1.2 Rulesforworkingwithoperators . . . . . . . . . . . . . . . . . . . 189 7.2 Timereversaltransformationonfields . . . . . . . . . . . . . . . . . . . . 191 7.2.1 Freefields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.2.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.3 CPTtransformationonfields . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.4 CPTtheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.5 Consequences ofCPTsymmetry . . . . . . . . . . . . . . . . . . . . . . . . 196 7.6 Timereversaltransformationonstates . . . . . . . . . . . . . . . . . . . . 198 7.7 Signatureoftimereversalviolation . . . . . . . . . . . . . . . . . . . . . . 199 8 Isospin 201 8.1 Nuclearenergylevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.2 Isospinsymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.