Lecture Notes in Mathematics 2086 Sébastien Boucksom Philippe Eyssidieux Vincent Guedj Editors An Introduction to the Kähler-Ricci Flow Lecture Notes in Mathematics 2086 Editors: J.-M.Morel,Cachan B.Teissier,Paris Forfurthervolumes: http://www.springer.com/series/304 Se´bastien Boucksom Philippe Eyssidieux (cid:2) Vincent Guedj Editors An Introduction to the Ka¨hler–Ricci Flow 123 Editors Se´bastienBoucksom PhilippeEyssidieux InstitutdeMathe´matiquesdeJussieu InstitutFourierandInstitutUniversitaire CNRS-Universite´PierreetMarieCurie deFrance Paris,France Universite´JosephFourier Saint-Martind’He`res,France VincentGuedj InstitutdeMathe´matiquesdeToulouse andInstitutUniversitairedeFrance Universite´PaulSabatier Toulouse,France ISBN978-3-319-00818-9 ISBN978-3-319-00819-6(eBook) DOI10.1007/978-3-319-00819-6 SpringerChamHeidelbergNewYorkDordrechtLondon LectureNotesinMathematicsISSNprintedition:0075-8434 ISSNelectronicedition:1617-9692 LibraryofCongressControlNumber:2013946026 MathematicsSubjectClassification(2010):35K96,32Q15,32Q20,32Q25,14E30 (cid:2)c SpringerInternationalPublishingSwitzerland2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface In 2010–2011we organized several meetings of our ANR project MACK. These consisted of series of lectures centered around the Ka¨hler–Ricci flow, which took place,respectively,in (cid:129) IMT(Toulouse,France),February2010:minicoursebyH.-D.Cao: AnintroductiontotheKa¨hler–RicciflowonFanomanifolds; (cid:129) LATP(Marseille,France),March2010:minicoursebyJ.Song: TheKa¨hler–Ricciflowoncomplexsurfaces; (cid:129) CIRM(Luminy,France),February2011:minicourseB.Wein kove: AnintroductiontotheKa¨hler–Ricciflow; (cid:129) CIRM(Luminy,France),February2011:minicourseJ.Song: Ka¨hler–RicciflowandtheMinimalModelProgram; (cid:129) IMT(Toulouse,France),June2011:minicoursebyD.-H.Phong: ThenormalizedKa¨hler–RicciflowonFanomanifolds; (cid:129) IMT(Toulouse,France),June2011:minicoursebyS.BoucksomandV.Guedj: RegularizingpropertiesoftheKa¨hler–Ricciflow; (cid:129) FSSM(Marrakech,Morocco),Oct ober2011:minicoursebyC.Imbert: Introductiontofullynonlinearparabolicequations; (cid:129) FSSM(Marrakech,Morocco),Oct ober2011:minicoursebyV.Guedj: ConvergenceoftheKa¨hler–RicciflowonKa¨hler–EinsteinFanomanifolds. Therewereotherlecturesonmorealgebraicaspects(e.g.,anintroductiontothe Minimal Model Program and finite generation of the canonical ring by S. Druel at the CIRM), or on elliptic problems (e.g., Moser–Trudinger inequalities by B.BerndtssoninMarrakech).Someofthespeakershaveproducedasetoflecture notes,workinghardtomakethemaccessibletonon-experts.Thisvolumepresents theminaunifiedway. v vi Preface Itisapleasuretothankalltheparticipantsofthesemeetingsfortheirenthusiasm andforcreatingaverypleasantatmosphereofwork.Specialthanksofcoursetothe followinglecturers: (cid:129) S e´bastienBoucksom(CNRSandIMJ,Paris,France); (cid:129) HuaiDongCao(LehighUniversity,Bethlehem,USA); (cid:129) VincentGuedj(IUFandIMT,Toulouse,France) (cid:129) CyrilImbert(CNRSandUniversit e´Paris-EstCre´teil,France); (cid:129) DuongHongPhong(ColumbiaUniversity,USA); (cid:129) JianSong(RutgersUniversity,Piscataway,USA); (cid:129) BenWeinkove(UniversityofCalifornia,SanDiego,USA). WeacknowledgefinancialsupportfromtheFrenchANRprojectMACK.Wealso would like to thank the CIRM and their staff for providing wonderful conditions ofworkduringthethematicmonth“ComplexandRiemanniangeometry,”as well as the LATP and the IMT for providing “professeur invite´” positions (resp. for H.-D.Cao,J.Song,andD.-H.Phong). Our last meeting in Marrakech was also extremely useful, we thank the orga- nizers (Said Asserda and Ahmed Zeriahi), the other speakers (B. Berndtsson, S. Boucksom, A. Broustet, J.-P. Demailly, S. Diverio, N.C. Nguyen, S. Lamy) as wellasalltheparticipantsfortheirhelpincreatingasuccessfulevent. Paris,France S.Boucksom Grenoble,France P.Eyssidieux Toulouse,France V.Guedj 1July2012 Contents 1 Introduction .................................................................. 1 Se´bastienBoucksom,PhilippeEyssidieux,andVincentGuedj 1.1 Motivation............................................................... 1 1.2 Contents ................................................................. 4 References..................................................................... 5 2 AnIntroductiontoFullyNonlinearParabolicEquations............... 7 CyrilImbertandLuisSilvestre 2.1 Introduction ............................................................. 7 2.2 SchauderEstimatesforLinearParabolicEquations................... 12 2.3 ViscositySolutions:AShortOverview................................ 23 2.4 HarnackInequality...................................................... 42 References..................................................................... 87 3 AnIntroductiontotheKa¨hler–RicciFlow................................ 89 JianSongandBenWeinkove 3.1 Preliminaries ............................................................ 92 3.2 GeneralEstimatesfortheKa¨hler–RicciFlow......................... 106 3.3 MaximalExistenceTimefortheKa¨hler–RicciFlow ................. 121 3.4 ConvergenceoftheFlow ............................................... 128 3.5 TheCaseWhenK IsBigandnef.................................... 140 M 3.6 Ka¨hler–RicciFlowonaProductEllipticSurface ..................... 153 3.7 FiniteTimeSingularities................................................ 163 3.8 TheKa¨hler–RicciFlowandtheAnalyticMMP....................... 173 References..................................................................... 183 4 RegularizingPropertiesoftheKa¨hler–RicciFlow....................... 189 Se´bastienBoucksomandVincentGuedj 4.1 AnAnalyticToolbox.................................................... 190 4.2 SmoothingPropertiesoftheKa¨hler–RicciFlow ...................... 196 4.3 DegenerateParabolicComplexMonge–Ampe`reEquations.......... 207 vii viii Contents 4.4 A Priori Estimates for Parabolic Complex Monge–Ampe`reEquations............................................. 210 4.5 ProofoftheMainTheorem............................................. 220 4.6 TheKa¨hler–RicciFlowonaLogTerminalVariety ................... 229 References..................................................................... 236 5 TheKa¨hler–RicciFlowonFanoManifolds............................... 239 Huai-DongCao 5.1 Preliminaries ............................................................ 242 5.2 The(Normalized)Ka¨hler–RicciFlow ................................. 246 5.3 TheLi–Yau–HamiltonInequalitiesforKRF .......................... 258 5.4 Perelman’sEntropyandNoncollapsingTheorems.................... 265 5.5 UniformCurvatureandDiameterEstimatesforNKRF withNonnegativeBisectionalCurvature............................... 274 5.6 Perelman’sUniformEstimates......................................... 276 5.7 RemarksontheFormationofSingularitiesinKRF................... 288 References..................................................................... 294 6 ConvergenceoftheKa¨hler–RicciFlow onaKa¨hler–EinsteinFanoManifold...................................... 299 VincentGuedj 6.1 Background.............................................................. 300 6.2 NormalizationofPotentials............................................. 307 6.3 C0-Estimate............................................................. 315 6.4 HigherOrderEstimates................................................. 323 6.5 ConvergenceoftheFlow ............................................... 325 6.6 AnAlternativeApproach............................................... 327 References..................................................................... 332 Chapter 1 Introduction Se´bastienBoucksom,PhilippeEyssidieux,andVincentGuedj Abstract This book is the first comprehensive reference on the Ka¨hler–Ricci flow. It provides an introduction to fully non-linear parabolic equations, to the Ka¨hler–Ricci flow in general and to Perelman’s estimates in the Fano case, and alsopresentstheconnectionswiththeMinimalModelprogram. 1.1 Motivation 1.1.1 SomeHistoricalRemarks AccordingtoWeil[Weil57],thenotionofaKa¨hlermanifold,introducedbyKa¨hler in 1933 [Ka¨h33], became important through the work of Hodge [Hod41] that put on a firm footing the theorems of Lefschetz on the topology of complex projective manifolds [Lef24]. As Hodge remarks, the introduction of a metric on a complex projective manifold is a somewhat artificial operation. However artificial, this operationturnedout to be veryfruitful. Kodaira developedHodge’s ideas into his famous theorem giving a differential geometric characterization of S.Boucksom((cid:2)) InstitutdeMathe´matiquesdeJussieu,CNRS-Universite´PierreetMarieCurie,4placeJussieu, 75251,Paris,France e-mail:[email protected] P.Eyssidieux InstitutFourierandInstitutUniversitairedeFrance,Universite´JosephFourier,100ruedesMaths, 38402,Saint-Martind’He`res,France e-mail:[email protected] V.Guedj InstitutdeMathe´matiquesdeToulouseandInstitutUniversitairedeFrance,Universite´ PaulSabatier,118routedeNarbonne,31062,ToulouseCedex9,France e-mail:[email protected] S.Boucksometal.(eds.),AnIntroductiontotheKa¨hler–RicciFlow, 1 LectureNotesinMathematics2086,DOI10.1007/978-3-319-00819-6 1, ©SpringerInternationalPublishingSwitzerland2013