AnIntroductiontoStructuralOptimization SOLIDMECHANICSANDITSAPPLICATIONS Volume153 SeriesEditor: G.M.L.GLADWELL DepartmentofCivilEngineering UniversityofWaterloo Waterloo,Ontario,CanadaN2L3GI AimsandScopeoftheSeries Thefundamentalquestionsarisinginmechanicsare:Why?,How?,andHowmuch? Theaimofthisseriesistoprovidelucidaccountswrittenbyauthoritativeresearchers givingvisionandinsightinansweringthesequestionsonthesubjectofmechanicsasit relatestosolids. Thescopeoftheseriescoverstheentirespectrumofsolidmechanics.Thusitincludes thefoundationofmechanics;variationalformulations;computationalmechanics;stat- ics,kinematicsanddynamicsofrigidandelasticbodies:vibrationsofsolidsandstruc- tures;dynamicalsystemsandchaos;thetheoriesofelasticity,plasticityandviscoelas- ticity;compositematerials;rods,beams,shellsandmembranes;structuralcontroland stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanicsandmachinedesign. Themedianlevelofpresentationisthefirstyeargraduatestudent.Sometextsaremono- graphsdefiningthecurrentstateofthefield;othersareaccessibletofinalyearunder- graduates;butessentiallytheemphasisisonreadabilityandclarity. Forothertitlespublishedinthisseries,goto www.springer.com/series/6557 · Peter W. Christensen Anders Klarbring An Introduction to Structural Optimization PeterW.Christensen,AndersKlarbring DivisionofMechanics LinköpingUniversity SE-58183Linköping Sweden [email protected],[email protected] ISBN978-1-4020-8665-6 e-ISBN978-1-4020-8666-3 LibraryofCongressControlNumber:2008934395 ©2009SpringerScience+BusinessMediaB.V. Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurposeof beingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper. 987654321 springer.com Preface This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems andmethodsofstructuraloptimization.Thethreebasicclassesofgeometricalop- timization problems of mechanical structures, i.e., size, shape and topology opti- mization,aretreated.Thefocusisonconcretenumericalsolutionmethodsfordis- crete and (finite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept ele- mentary but are otherwise only cited, while implementation details are frequently provided.Moreover,sincethetexthasanemphasisongeometricaldesignproblems, wherethedesignisrepresentedbycontinuouslyvarying—frequentlyverymany— variables,so-calledfirstordermethodsarecentraltothetreatment.Thesemethods arebasedonsensitivityanalysis,i.e.,onestablishingfirstorderderivativesforob- jectives and constraints. The classical first order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable approxi- mations.Itshouldberemarkedthattheclassicalandfrequentlyusedso-calledopti- malitycriteriamethodisalsoofthiskind.Itmayalsobenotedinthiscontextthat zeroordermethodssuchasresponsesurfacemethods,surrogatemodels,neuralnet- works,geneticalgorithms,etc.,essentiallyapplytodifferenttypesofproblemsthan the ones treated here and should be presented elsewhere. The numerical solutions thatarepresentedareallobtainedusingin-houseprograms,someofwhichcanbe downloadedfromthebook’shomepageatwww.mechanics.iei.liu.se/edu_ug/strop/. These programs should also be used for solving some of the more extensive exer- cisesprovided. Thetextiswrittenforstudentswithabackgroundinsolidandstructuralmechan- icswithabasicknowledgeofthefiniteelementmethod,althoughinourexperience such knowledge could be replaced by a certain mathematical maturity. Previous exposure to basic optimization theory and convex programming is helpful but not strictlynecessary. The first three chapters of the book represent an introductory and preparatory part. In Chap. 1 we introduce the basic idea of mathematical design optimization andindicateitsplaceinthebroaderframeofproductrealization,aswellasdefine basicconceptsandterminology.Chapter2isdevotedtoaseriesofsmall-scaleprob- lemsthat,ontheonehand,givefamiliaritywiththetypeofproblemsencountered in structural optimization and, on the other hand, are used as model problems in upcomingchapters.Chapter3reviewsbasicconceptsofconvexanalysis,andexem- plifiesthesebymeansofconceptsfromstructuralmechanics.Chapter4is,froman algorithmicpointofview,thecorechapterofthebook.Itintroducesthebasicideaof sequentialexplicitconvexapproximations,andCONLINandMMAarepresented. InChap.5thelatterisappliedtostiffnessoptimizationofatruss.Thisisaclassical v vi Preface model problem of structural optimization which we investigate thoroughly. Chap- ter6concernssensitivityanalysisforfiniteelementdiscretizedstructures.Sensitiv- ities for shape changes are combined with two-dimensional shape representations suchasBézierandB-splinesinChap.7,andthisclosesthetreatmentofshapeopti- mization.Chapter8isessentiallyapreparationfortheformulationoftheproblemof stiffnesstopologyoptimization.Wereviewsomeclassicalresultsofthecalculusof variations,andderiveoptimalityconditionsforstiffnessoptimizationofdistributed parameter systems. In Chap. 9 this problem is slightly extended and discretized, anditprovidesagatewayintotheproblemoftopologyoptimizationforcontinuous structures.Wederivetheoptimalitycriteriamethodasaspecialcaseofthegeneral explicitconvexapproximationmethod, discuss well-posedness and different types ofregularizationmethods. Thisbeinganintroductorytreatment,wehavenotmadeanefforttogiveacom- pletesetofreferences,noranhistoricalaccountofstructuraloptimization.Forthat we refer to existing monographs such as Haftka and Gürdal [18], Kirsch [22] and BendsøeandSigmund[4]. As mentioned, this book has its roots in several series of lectures at Linköping University,wherethefirstonewasgivenbythesecondauthorofthisbookin1992. Followingthese,intheyear2000,aseparatecourseinstructuraloptimizationwas established,andJoakimPeterssonwasmaderesponsibleanddefineditsbasiccon- tents. After having taught the course on two occasions, Joakim very unexpectedly andsadlypassedawayinSeptember2002,[3].Theauthorsofthisbookthentook overandsharedresponsibilityforthecourse,initiallyteachingitinawaythatwas veryclosetothelecturenotesofJoakim.Outofappreciation,wehavecontinuedto teachthecourse,andeventuallywrittenthisbook,closelyfollowingthespiritand styleofJoakim,aswerememberandunderstandit. We like to extend a special thanks to Bo Torstenfelt and Thomas Borrvall for havingprovidedsomeofthenumericalsolutionspresentedinthebook.Torstenfelt’s easy-to-usefiniteelementprogramTRINITASmaybedownloadedfromthebook’s homepage, and should be used for two computer exercises on shape and topology optimization. A Java applet by Borrvall for performing topology optimization is also available on the homepage. For the permission to use their programs we are sincerelygrateful. Linköping, PeterW.Christensen July2008 AndersKlarbring Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 TheBasicIdea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TheDesignProcess . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 GeneralMathematicalFormofaStructuralOptimizationProblem. 3 1.4 ThreeTypesofStructuralOptimizationProblems . . . . . . . . . 5 1.5 DiscreteandDistributedParameterSystems . . . . . . . . . . . . 7 2 ExamplesofOptimizationofDiscreteParameterSystems . . . . . . 9 2.1 Weight Minimization of a Two-Bar Truss Subject to Stress Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 WeightMinimizationofaTwo-BarTrussSubjecttoStressand InstabilityConstraints . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 WeightMinimizationofaTwo-BarTrussSubjecttoStressand DisplacementConstraints . . . . . . . . . . . . . . . . . . . . . . 14 2.4 WeightMinimizationofaTwo-BeamCantileverSubjecttoa DisplacementConstraint . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Weight Minimizationof a Three-Bar Truss Subjectto Stress Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 WeightMinimizationofaThree-BarTrussSubjecttoaStiffness Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 BasicsofConvexProgramming . . . . . . . . . . . . . . . . . . . . . 35 3.1 LocalandGlobalOptima . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 KKTConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 LagrangianDuality . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 LagrangianDualityforConvexandSeparableProblems . . 47 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 SequentialExplicit,ConvexApproximations . . . . . . . . . . . . . . 57 4.1 GeneralSolutionProcedureforNestedProblems . . . . . . . . . . 57 vii viii Contents 4.2 SequentialLinearProgramming(SLP) . . . . . . . . . . . . . . . 58 4.3 SequentialQuadraticProgramming(SQP) . . . . . . . . . . . . . 59 4.4 ConvexLinearization(CONLIN) . . . . . . . . . . . . . . . . . . 59 4.5 TheMethodofMovingAsymptotes(MMA) . . . . . . . . . . . . 66 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 SizingStiffnessOptimizationofaTruss . . . . . . . . . . . . . . . . 77 5.1 TheSimultaneousFormulationoftheProblem . . . . . . . . . . . 77 5.2 TheNestedFormulationandSomeofItsProperties . . . . . . . . 84 5.2.1 ConvexityoftheNestedProblem . . . . . . . . . . . . . . 85 5.2.2 FullyStressedDesigns. . . . . . . . . . . . . . . . . . . . 87 5.2.3 MinimizationoftheVolumeUnderaComplianceConstraint 88 5.3 NumericalSolutionoftheNestedProblemUsingMMA . . . . . . 91 6 SensitivityAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1 NumericalMethods . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 AnalyticalMethods . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.1 DirectAnalyticalMethod . . . . . . . . . . . . . . . . . . 98 6.2.2 AdjointAnalyticalMethod . . . . . . . . . . . . . . . . . 99 6.3 AnalyticalCalculationofPseudo-loads . . . . . . . . . . . . . . . 100 6.3.1 Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.2 PlaneSheets . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7 Two-DimensionalShapeOptimization . . . . . . . . . . . . . . . . . 117 7.1 ShapeRepresentation . . . . . . . . . . . . . . . . . . . . . . . . 117 7.1.1 BézierSplines . . . . . . . . . . . . . . . . . . . . . . . . 118 7.1.2 B-Splines. . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2 TreatmentofGeometricalDesignConstraints. . . . . . . . . . . . 127 7.2.1 C1 ContinuityBetweenBézierSplines . . . . . . . . . . . 128 7.2.2 C1 ContinuityataPointonaLineofSymmetry . . . . . . 129 7.2.3 ACompositeCircularArc . . . . . . . . . . . . . . . . . . 131 7.3 MeshGenerationandCalculationofNodalSensitivities . . . . . . 132 7.3.1 B-SplineSurfaceMeshes . . . . . . . . . . . . . . . . . . 133 7.3.2 CoonsSurfaceMeshes. . . . . . . . . . . . . . . . . . . . 134 7.3.3 UnstructuredMeshes . . . . . . . . . . . . . . . . . . . . 137 7.4 SummaryofSensitivityAnalysisforTwo-DimensionalShape Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8 StiffnessOptimizationofDistributedParameterSystems. . . . . . . 147 8.1 CalculusofVariations . . . . . . . . . . . . . . . . . . . . . . . . 147 8.1.1 OptimalityConditionsandGateauxDerivatives . . . . . . 149 8.1.2 HandlingaConstraint . . . . . . . . . . . . . . . . . . . . 153 8.2 EquilibriumPrinciplesforDistributedParameterSystems . . . . . 156 8.2.1 One-DimensionalElasticity . . . . . . . . . . . . . . . . . 156 Contents ix 8.2.2 BeamProblem . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2.3 Two-DimensionalElasticity . . . . . . . . . . . . . . . . . 159 8.2.4 AbstractEquilibriumPrinciples . . . . . . . . . . . . . . . 162 8.3 TheDesignProblem . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.3.1 OptimalityConditions . . . . . . . . . . . . . . . . . . . . 166 8.3.2 TheStiffestRod . . . . . . . . . . . . . . . . . . . . . . . 168 8.3.3 BeamStiffnessOptimization . . . . . . . . . . . . . . . . 170 8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 9 TopologyOptimizationofDistributedParameterSystems . . . . . . 179 9.1 TheVariableThicknessSheetProblem . . . . . . . . . . . . . . . 179 9.1.1 ProblemStatementandFE-Discretization. . . . . . . . . . 179 9.1.2 TheOptimalityCriteria(OC)Method . . . . . . . . . . . . 182 9.2 PenalizationofIntermediateThicknessValues . . . . . . . . . . . 188 9.2.1 SolidIsotropicMaterialwithPenalization(SIMP) . . . . . 188 9.2.2 OtherPenalizations . . . . . . . . . . . . . . . . . . . . . 190 9.3 Well-PosednessandPotentialNumericalProblems . . . . . . . . . 190 9.3.1 TheArchetypeProblemandanAnalogy . . . . . . . . . . 190 9.3.2 NumericalInstabilities . . . . . . . . . . . . . . . . . . . . 191 9.4 RestrictionoftheArchetypeProblem . . . . . . . . . . . . . . . . 193 9.4.1 BoundsontheDesignGradient . . . . . . . . . . . . . . . 194 9.4.2 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 9.5 RelaxationoftheArchetypeProblem . . . . . . . . . . . . . . . . 198 9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 AnswerstoSelectedExercises. . . . . . . . . . . . . . . . . . . . . . . . . 203 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209