ebook img

An Introduction to Statistical Computing: A Simulation-based Approach PDF

388 Pages·2013·3.369 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Statistical Computing: A Simulation-based Approach

An Introduction to Statistical Computing WILEYSERIESINCOMPUTATIONALSTATISTICS ConsultingEditors: PaoloGiudici UniversityofPavia,Italy GeofH.Givens ColoradoStateUniversity,USA BaniK.Mallick TexasA&MUniversity,USA WileySeriesinComputationalStatisticsiscomprisedofpracticalguidesandcutting edge research books on new developments in computational statistics. It features quality authors with a strong applications focus. The texts in the series provide detailed coverage of statistical concepts, methods and case studies in areas at the interfaceofstatistics,computing,andnumerics. With sound motivation and a wealth of practical examples, the books show in concrete terms how to select and to use appropriate ranges of statistical comput- ing techniques in particular fields of study. Readers are assumed to have a basic understandingofintroductoryterminology. Theseriesconcentratesonapplicationsofcomputationalmethodsinstatisticsto fieldsofbioinformatics,genomics,epidemiology,business,engineering,financeand appliedstatistics. TitlesintheSeries Biegler,Biros,Ghattas,Heinkenschloss,Keyes,Mallick,Marzouk,Tenorio, Waanders,Willcox–Large-ScaleInverseProblemsandQuantificationofUncertainty BillardandDiday–SymbolicDataAnalysis:ConceptualStatisticsandDataMining Bolstad–UnderstandingComputationalBayesianStatistics Borgelt,SteinbrecherandKruse–GraphicalModels,2e Dunne–AStatisticalApproachtoNeutralNetworksforPatternRecognition Liang,LiuandCarroll–AdvancedMarkovChainMonteCarloMethods Ntzoufras–BayesianModelingUsingWinBUGS Tuffe´ry–DataMiningandStatisticsforDecisionMaking An Introduction to Statistical Computing A Simulation-based Approach Jochen Voss SchoolofMathematics,UniversityofLeeds,UK Thiseditionfirstpublished2014 (cid:2)C 2014JohnWiley&Sons,Ltd Registeredoffice JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ, UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionof thepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrand namesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregistered trademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendor mentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisherisnot engagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefor damagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofa competentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Voss,Jochen. Anintroductiontostatisticalcomputing:asimulation-basedapproach/JochenVoss.–Firstedition. pagescm.–(Wileyseriesincomputationalstatistics) Includesbibliographicalreferencesandindex. ISBN978-1-118-35772-9(hardback) 1.Mathematicalstatistics–Dataprocessing. I.Title. QA276.4.V662013 519.501(cid:3)13–dc23 2013019321 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-1-118-35772-9 Typesetin10/12ptTimesbyAptaraInc.,NewDelhi,India 1 2014 Contents Listofalgorithms ix Preface xi Nomenclature xiii 1 Randomnumbergeneration 1 1.1 Pseudorandomnumbergenerators 2 1.1.1 Thelinearcongruentialgenerator 2 1.1.2 Qualityofpseudorandomnumbergenerators 4 1.1.3 Pseudorandomnumbergeneratorsinpractice 8 1.2 Discretedistributions 8 1.3 Theinversetransformmethod 11 1.4 Rejectionsampling 15 1.4.1 Basicrejectionsampling 15 1.4.2 Enveloperejectionsampling 18 1.4.3 Conditionaldistributions 22 1.4.4 Geometricinterpretation 26 1.5 Transformationofrandomvariables 30 1.6 Special-purposemethods 36 1.7 Summaryandfurtherreading 36 Exercises 37 2 Simulatingstatisticalmodels 41 2.1 Multivariatenormaldistributions 41 2.2 Hierarchicalmodels 45 2.3 Markovchains 50 2.3.1 Discretestatespace 51 2.3.2 Continuousstatespace 56 2.4 Poissonprocesses 58 2.5 Summaryandfurtherreading 67 Exercises 67 vi CONTENTS 3 MonteCarlomethods 69 3.1 Studyingmodelsviasimulation 69 3.2 MonteCarloestimates 74 3.2.1 ComputingMonteCarloestimates 75 3.2.2 MonteCarloerror 76 3.2.3 Choiceofsamplesize 80 3.2.4 Refinederrorbounds 82 3.3 Variancereductionmethods 84 3.3.1 Importancesampling 84 3.3.2 Antitheticvariables 88 3.3.3 Controlvariates 93 3.4 Applicationstostatisticalinference 96 3.4.1 Pointestimators 97 3.4.2 Confidenceintervals 100 3.4.3 Hypothesistests 103 3.5 Summaryandfurtherreading 106 Exercises 106 4 MarkovChainMonteCarlomethods 109 4.1 TheMetropolis–Hastingsmethod 110 4.1.1 Continuousstatespace 110 4.1.2 Discretestatespace 113 4.1.3 RandomwalkMetropolissampling 116 4.1.4 Theindependencesampler 119 4.1.5 Metropolis–Hastingswithdifferentmovetypes 120 4.2 ConvergenceofMarkovChainMonteCarlomethods 125 4.2.1 Theoreticalresults 125 4.2.2 Practicalconsiderations 129 4.3 ApplicationstoBayesianinference 137 4.4 TheGibbssampler 141 4.4.1 Descriptionofthemethod 141 4.4.2 Applicationtoparameterestimation 146 4.4.3 Applicationstoimageprocessing 151 4.5 ReversibleJumpMarkovChainMonteCarlo 158 4.5.1 Descriptionofthemethod 160 4.5.2 Bayesianinferenceformixturedistributions 171 4.6 Summaryandfurtherreading 178 4.6 Exercises 178 5 BeyondMonteCarlo 181 5.1 ApproximateBayesianComputation 181 5.1.1 BasicApproximateBayesianComputation 182 5.1.2 ApproximateBayesianComputationwithregression 188 5.2 Resamplingmethods 192 CONTENTS vii 5.2.1 Bootstrapestimates 192 5.2.2 Applicationstostatisticalinference 197 5.3 Summaryandfurtherreading 209 Exercises 209 6 Continuous-timemodels 213 6.1 Timediscretisation 213 6.2 Brownianmotion 214 6.2.1 Properties 216 6.2.2 Directsimulation 217 6.2.3 InterpolationandBrownianbridges 218 6.3 GeometricBrownianmotion 221 6.4 Stochasticdifferentialequations 224 6.4.1 Introduction 224 6.4.2 Stochasticanalysis 226 6.4.3 Discretisationschemes 231 6.4.4 Discretisationerror 236 6.5 MonteCarloestimates 243 6.5.1 BasicMonteCarlo 243 6.5.2 Variancereductionmethods 247 6.5.3 MultilevelMonteCarloestimates 250 6.6 Applicationtooptionpricing 255 6.7 Summaryandfurtherreading 259 Exercises 260 AppendixA Probabilityreminders 263 A.1 Eventsandprobability 263 A.2 Conditionalprobability 266 A.3 Expectation 268 A.4 Limittheorems 269 A.5 Furtherreading 270 AppendixB ProgramminginR 271 B.1 Generaladvice 271 B.2 RasaCalculator 272 B.2.1 Mathematicaloperations 273 B.2.2 Variables 273 B.2.3 Datatypes 275 B.3 Programmingprinciples 282 B.3.1 Don’trepeatyourself! 283 B.3.2 Divideandconquer! 286 B.3.3 Testyourcode! 290 B.4 Randomnumbergeneration 292 B.5 Summaryandfurtherreading 294 Exercises 294 viii CONTENTS AppendixC Answerstotheexercises 299 C.1 AnswersforChapter1 299 C.2 AnswersforChapter2 315 C.3 AnswersforChapter3 319 C.4 AnswersforChapter4 328 C.5 AnswersforChapter5 342 C.6 AnswersforChapter6 350 C.7 AnswersforAppendixB 366 References 375 Index 379 List of algorithms Randomnumbergeneration alg.1.2 linearcongruentialgenerator 2 alg.1.13 inversetransformmethod 12 alg.1.19 basicrejectionsampling 15 alg.1.22 enveloperejectionsampling 19 alg.1.25 rejectionsamplingforconditionaldistributions 22 Simulatingstatisticalmodels alg.2.9 mixturedistributions 47 alg.2.11 componentwisesimulation 49 alg.2.22 Markovchainswithdiscretestatespace 53 alg.2.31 Markovchainswithcontinuousstatespace 58 alg.2.36 Poissonprocess 61 alg.2.41 thinningmethodforPoissonprocesses 65 MonteCarlomethods alg.3.8 MonteCarloestimate 75 alg.3.22 importancesampling 85 alg.3.26 antitheticvariables 89 alg.3.31 controlvariates 93 MarkovChainMonteCarlomethods alg.4.2 Metropolis–Hastingsmethodforcontinuousstatespace 110 alg.4.4 Metropolis–Hastingsmethodfordiscretestatespace 113 alg.4.9 randomwalkMetropolis 117 alg.4.11 independencesampler 119 alg.4.12 Metropolis–Hastingsmethodwithdifferentmovetypes 121 alg.4.27 Gibbssampler 142 alg.4.31 GibbssamplerfortheIsingmodel 155 alg.4.32 Gibbssamplerinimageprocessing 158 alg.4.36 reversiblejumpMarkovChainMonteCarlo 165 x LISTOFALGORITHMS BeyondMonteCarlo alg.5.1 basicApproximateBayesianComputation 182 alg.5.6 ApproximateBayesianComputationwithregression 191 alg.5.11 generalbootstrapestimate 196 alg.5.15 bootstrapestimateofthebias 200 alg.5.18 bootstrapestimateofthestandarderror 202 alg.5.20 simplebootstrapconfidenceinterval 205 alg.5.21 BC bootstrapconfidenceinterval 207 a Continuous-timemodels alg.6.6 Brownianmotion 217 alg.6.12 Euler–Maruyamascheme 232 alg.6.15 Milsteinscheme 235 alg.6.26 multilevelMonteCarloestimates 251 alg.6.29 Euler–MaruyamaschemefortheHestonmodel 256

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.