ebook img

An introduction to non-abelian discrete symmetries for particle physicists PDF

288 Pages·2012·2.85 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An introduction to non-abelian discrete symmetries for particle physicists

Lecture Notes in Physics Volume 858 FoundingEditors W.Beiglböck J.Ehlers K.Hepp H.Weidenmüller EditorialBoard B.-G.Englert,Singapore,Singapore U.Frisch,Nice,France P.Hänggi,Augsburg,Germany W.Hillebrandt,Garching,Germany M.Hjort-Jensen,Oslo,Norway R.A.L.Jones,Sheffield,UK H.vonLöhneysen,Karlsruhe,Germany M.S.Longair,Cambridge,UK M.L.Mangano,Geneva,Switzerland J.-F.Pinton,Lyon,France J.-M.Raimond,Paris,France A.Rubio,Donostia,SanSebastian,Spain M.Salmhofer,Heidelberg,Germany D.Sornette,Zurich,Switzerland S.Theisen,Potsdam,Germany D.Vollhardt,Augsburg,Germany W.Weise,Garching,Germany Forfurthervolumes: http://www.springer.com/series/5304 The Lecture Notes in Physics TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelop- ments in physics research and teaching—quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging mate- rialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandtoserve threepurposes: • to be a compact and modern up-to-date source of reference on a well-defined topic • to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas • to be a source of advanced teaching material for specialized seminars, courses andschools Both monographs and multi-author volumes will be considered for publication. Editedvolumesshould,however,consistofaverylimitednumberofcontributions only.ProceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic for- mats,theelectronicarchivebeingavailableatspringerlink.com.Theseriescontent isindexed,abstractedandreferencedbymanyabstractingandinformationservices, bibliographicnetworks,subscriptionagencies,librarynetworks,andconsortia. Proposals should be sent to a member of the Editorial Board, or directly to the managingeditoratSpringer: ChristianCaron SpringerHeidelberg PhysicsEditorialDepartmentI Tiergartenstrasse17 69121Heidelberg/Germany [email protected] Hajime Ishimori (cid:2) Tatsuo Kobayashi (cid:2) Hiroshi Ohki (cid:2) Hiroshi Okada (cid:2) Yusuke Shimizu (cid:2) Morimitsu Tanimoto An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists HajimeIshimori HiroshiOkada DepartmentofPhysics SchoolofPhysics KyotoUniversity KoreanInstituteforAdvancedStudy Kyoto,Japan Seoul,Korea TatsuoKobayashi DepartmentofPhysics YusukeShimizu KyotoUniversity DepartmentofPhysics Kyoto,Japan NiigataUniversity Niigata,Japan HiroshiOhki Kobayashi-MaskawaInstitute fortheOriginofParticles MorimitsuTanimoto andtheUniverse(KMJ) DepartmentofPhysics NagoyaUniversity NiigataUniversity Nagoya,Japan Niigata,Japan ISSN0075-8450 ISSN1616-6361(electronic) LectureNotesinPhysics ISBN978-3-642-30804-8 ISBN978-3-642-30805-5(eBook) DOI10.1007/978-3-642-30805-5 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012944594 ©Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The purpose of these lecture notes is to introduce the basic framework of non- Abeliandiscretesymmetries,andtopresentsomeimportantapplicationsinparticle physics.Discretenon-Abeliangroupshaveinfactplayedanimportantroleinparti- clephysics.However,theymaynotbesofamiliartoparticlephysicistsascontinu- ousnon-Abeliansymmetries.Theselecturenotesarewrittenforparticlephysicists anddifferinthisrespectfromstandardbooksongrouptheory.However,preliminary knowledge of group theory is not required to understand the non-Abelian discrete symmetries. Wehopeourlecturenoteswillserveasahandbookforseriouslearners,andalso asahelpfulreferencebookforexperts,aswellperhapsastriggeringfutureresearch. It is pleasure to acknowledge fruitful discussions with H. Abe, T. Araki, K.S. Choi, Y. Daikoku, K. Hashimoto, J. Kubo, H.P. Nilles, F. Ploger, S. Raby, S.Ramos-Sanchez,M.Ratz,andP.K.S.Vaudrevange. HajimeIshimori TatsuoKobayashi HiroshiOhki HiroshiOkada YusukeShimizu MorimitsuTanimoto v Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 BasicsofFiniteGroups. . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 N 3.1 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 3.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 22 3.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 3.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 CharactersandRepresentations . . . . . . . . . . . . . . . 27 3.2.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 N 4.1 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4 4.2 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 4.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 CharactersandRepresentations . . . . . . . . . . . . . . . 35 4.2.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (cid:2) 5 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 CharactersandRepresentations . . . . . . . . . . . . . . . . . . . 44 5.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 N 6.1 D withN Even. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 N 6.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 52 vii viii Contents 6.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 52 6.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 D withN Odd . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 N 6.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 56 6.2.2 CharactersandRepresentations . . . . . . . . . . . . . . . 56 6.2.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 57 6.3 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 6.4 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5 7 Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 N 7.1 Q withN =4n . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 N 7.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 62 7.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 62 7.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 62 7.2 Q withN =4n+2 . . . . . . . . . . . . . . . . . . . . . . . . 64 N 7.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 64 7.2.2 CharactersandRepresentations . . . . . . . . . . . . . . . 64 7.2.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 65 7.3 Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 7.4 Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 8 QD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2N 8.1 GenericAspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 8.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 70 8.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 70 8.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 71 8.2 QD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 16 9 Σ(2N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 9.1 GenericAspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 9.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 75 9.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 76 9.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 77 9.2 Σ(18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.3 Σ(32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 9.4 Σ(50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 10 Δ(3N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 10.1 Δ(3N2)withN/3(cid:2)=Integer. . . . . . . . . . . . . . . . . . . . . 87 10.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 88 10.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 89 10.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 89 10.2 Δ(3N2)withN/3Integer . . . . . . . . . . . . . . . . . . . . . . 91 10.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 91 10.2.2 CharactersandRepresentations . . . . . . . . . . . . . . . 92 10.2.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 93 10.3 Δ(27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Contents ix 11 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 N 11.1 GenericAspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 11.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 98 11.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 99 11.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 99 11.2 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 11.3 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 13 11.4 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 12 Σ(3N3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 12.1 GenericAspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 12.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 110 12.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 111 12.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 112 12.2 Σ(81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 13 Δ(6N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 13.1 Δ(6N2)withN/3(cid:2)=Integer. . . . . . . . . . . . . . . . . . . . . 123 13.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 123 13.1.2 CharactersandRepresentations . . . . . . . . . . . . . . . 126 13.1.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 128 13.2 Δ(6N2)withN/3Integer . . . . . . . . . . . . . . . . . . . . . . 131 13.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 131 13.2.2 CharactersandRepresentations . . . . . . . . . . . . . . . 133 13.2.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 134 13.3 Δ(54) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 13.3.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 138 13.3.2 CharactersandRepresentations . . . . . . . . . . . . . . . 139 13.3.3 TensorProducts . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 14 SubgroupsandDecompositionsofMultiplets . . . . . . . . . . . . . 147 14.1 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 3 14.1.1 S →Z . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3 3 14.1.2 S →Z . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3 2 14.2 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4 14.2.1 S →S . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4 3 14.2.2 S →A . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4 4 14.2.3 S →Σ(8) . . . . . . . . . . . . . . . . . . . . . . . . . . 151 4 14.3 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4 14.3.1 A →Z . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4 3 14.3.2 A →Z ×Z . . . . . . . . . . . . . . . . . . . . . . . . 153 4 2 2 14.4 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5 14.4.1 A →A . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5 4 x Contents 14.4.2 A →D . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5 5 14.4.3 A →S (cid:4)D . . . . . . . . . . . . . . . . . . . . . . . 154 5 3 3 (cid:5) 14.5 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 14.5.1 T(cid:5)→Z . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6 14.5.2 T(cid:5)→Z . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4 14.5.3 T(cid:5)→Q . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4 14.6 GeneralD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 N 14.6.1 D →Z . . . . . . . . . . . . . . . . . . . . . . . . . 156 N 2 14.6.2 D →Z . . . . . . . . . . . . . . . . . . . . . . . . . 157 N N 14.6.3 D →D . . . . . . . . . . . . . . . . . . . . . . . . . 157 N M 14.7 D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4 14.7.1 D →Z . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4 4 14.7.2 D →Z ×Z . . . . . . . . . . . . . . . . . . . . . . . 159 4 2 2 14.7.3 D →Z . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4 2 14.8 GeneralQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 N 14.8.1 Q →Z . . . . . . . . . . . . . . . . . . . . . . . . . 160 N 4 14.8.2 Q →Z . . . . . . . . . . . . . . . . . . . . . . . . . 161 N N 14.8.3 Q →Q . . . . . . . . . . . . . . . . . . . . . . . . . 161 N M 14.9 Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4 14.9.1 Q →Z . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4 4 14.10 QD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 2N 14.10.1 QD →Z . . . . . . . . . . . . . . . . . . . . . . . . 163 2N 2 14.10.2 QD →Z . . . . . . . . . . . . . . . . . . . . . . . . 163 2N N 14.10.3 QD →D . . . . . . . . . . . . . . . . . . . . . . . 163 2N N/2 14.11GeneralΣ(2N2) . . . . . . . . . . . . . . . . . . . . . . . . . . 164 14.11.1 Σ(2N2)→Z . . . . . . . . . . . . . . . . . . . . . . 164 2N 14.11.2 Σ(2N2)→Z ×Z . . . . . . . . . . . . . . . . . . . 164 N N 14.11.3 Σ(2N2)→D . . . . . . . . . . . . . . . . . . . . . . 165 N 14.11.4 Σ(2N2)→Q . . . . . . . . . . . . . . . . . . . . . . 166 N 14.11.5 Σ(2N2)→Σ(2M2) . . . . . . . . . . . . . . . . . . . . 166 14.12 Σ(32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 14.13GeneralΔ(3N2) . . . . . . . . . . . . . . . . . . . . . . . . . . 168 14.13.1 Δ(3N2)→Z . . . . . . . . . . . . . . . . . . . . . . . 169 3 14.13.2 Δ(3N2)→Z ×Z . . . . . . . . . . . . . . . . . . . 169 N N 14.13.3 Δ(3N2)→T . . . . . . . . . . . . . . . . . . . . . . . 170 N 14.13.4 Δ(3N2)→Δ(3M2) . . . . . . . . . . . . . . . . . . . . 170 14.14 Δ(27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 14.14.1 Δ(27)→Z . . . . . . . . . . . . . . . . . . . . . . . . 172 3 14.14.2 Δ(27)→Z ×Z . . . . . . . . . . . . . . . . . . . . . 172 3 3 14.15GeneralT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 N 14.15.1 T →Z . . . . . . . . . . . . . . . . . . . . . . . . . . 173 N 3 14.15.2 T →Z . . . . . . . . . . . . . . . . . . . . . . . . . 173 N N 14.16 T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7 14.16.1 T →Z . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7 3 14.16.2 T →Z . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7 7

Description:
These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control cou
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.