ebook img

An Introduction to Mathematical Proofs (Textbooks in Mathematics) PDF

413 Pages·2019·2.881 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Mathematical Proofs (Textbooks in Mathematics)

An Introduction to Mathematical Proofs An Introduction to Mathematical Proofs Nicholas A. Loehr CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-0-367-33823-7(Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable e(cid:11)orts have been made to publish reliable data and information, but the author and publisher cannot assume responsibilityforthevalidityofallmaterialsortheconsequencesoftheiruse.Theauthorsandpublishers haveattemptedtotracethecopyrightholdersofallmaterialreproducedinthispublicationandapologize tocopyrightholdersifpermissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterial hasnotbeenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. ExceptaspermittedunderU.S.CopyrightLaw,nopartofthisbookmaybereprinted,reproduced,trans- mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, micro(cid:12)lming, and recording, or in any information storage or retrieval system,withoutwrittenpermissionfromthepublishers. Forpermissiontophotocopyorusematerialelectronicallyfromthiswork,pleaseaccesswww.copyright.com (http://www.copyright.com/)orcontacttheCopyrightClearanceCenter,Inc.(CCC),222RosewoodDrive, Danvers,MA01923,978-750-8400.CCCisanot-for-pro(cid:12)torganizationthatprovideslicensesandregistra- tion for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separatesystemofpaymenthasbeenarranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are usedonlyforidenti(cid:12)cationandexplanationwithoutintenttoinfringe. PleasevisittheLibraryofCongresswebsiteforinformationaboutthisbook. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com This book is dedicated to my father Frank. Contents Preface ix 1 Logic 1 1.1 Propositions, Logical Connectives, and Truth Tables . . . . . . . . . . . . . 1 1.2 Logical Equivalences and IF-Statements . . . . . . . . . . . . . . . . . . . . 9 1.3 IF, IFF, Tautologies, and Contradictions . . . . . . . . . . . . . . . . . . . 18 1.4 Tautologies, Quanti(cid:12)ers, and Universes . . . . . . . . . . . . . . . . . . . . 26 1.5 Quanti(cid:12)er Properties and Useful Denials . . . . . . . . . . . . . . . . . . . 32 1.6 Denial Practice and Uniqueness Statements . . . . . . . . . . . . . . . . . . 40 2 Proofs 47 2.1 De(cid:12)nitions, Axioms, Theorems, and Proofs . . . . . . . . . . . . . . . . . . 47 2.2 Proving Existence Statements and IF Statements . . . . . . . . . . . . . . 56 2.3 Contrapositive Proofs and IFF Proofs . . . . . . . . . . . . . . . . . . . . . 63 2.4 Proofs by Contradiction and Proofs of OR-Statements . . . . . . . . . . . . 70 2.5 Proofs by Cases and Disproofs . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.6 Proving Quanti(cid:12)ed Statements . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.7 More Quanti(cid:12)er Properties and Proofs (Optional) . . . . . . . . . . . . . . 90 Review of Logic and Proofs 97 3 Sets 103 3.1 Set Operations and Subset Proofs . . . . . . . . . . . . . . . . . . . . . . . 103 3.2 Subset Proofs and Set Equality Proofs . . . . . . . . . . . . . . . . . . . . 110 3.3 Set Equality Proofs, Circle Proofs, and Chain Proofs . . . . . . . . . . . . 117 3.4 Small Sets and Power Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.5 Ordered Pairs and Product Sets . . . . . . . . . . . . . . . . . . . . . . . . 131 3.6 General Unions and Intersections . . . . . . . . . . . . . . . . . . . . . . . 140 3.7 Axiomatic Set Theory (Optional) . . . . . . . . . . . . . . . . . . . . . . . 148 4 Integers 159 4.1 Recursive De(cid:12)nitions and Proofs by Induction . . . . . . . . . . . . . . . . 159 4.2 Induction Starting Anywhere and Backwards Induction . . . . . . . . . . . 166 4.3 Strong Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.4 Prime Numbers and Integer Division . . . . . . . . . . . . . . . . . . . . . 179 4.5 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 4.6 GCDs and Uniqueness of Prime Factorizations . . . . . . . . . . . . . . . . 192 4.7 Consequences of Prime Factorization (Optional) . . . . . . . . . . . . . . . 197 vii viii Contents Review of Set Theory and Integers 203 5 Relations and Functions 211 5.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 5.2 Inverses, Identity, and Composition of Relations . . . . . . . . . . . . . . . 219 5.3 Properties of Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 5.4 De(cid:12)nition of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 5.5 Examples of Functions and Function Equality . . . . . . . . . . . . . . . . 239 5.6 Composition, Restriction, and Gluing . . . . . . . . . . . . . . . . . . . . . 246 5.7 Direct Images and Preimages . . . . . . . . . . . . . . . . . . . . . . . . . . 254 5.8 Injective, Surjective, and Bijective Functions . . . . . . . . . . . . . . . . . 260 5.9 Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 6 Equivalence Relations and Partial Orders 275 6.1 Re(cid:13)exive, Symmetric, and Transitive Relations . . . . . . . . . . . . . . . . 275 6.2 Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 6.3 Equivalence Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 6.4 Set Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 6.5 Partially Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 6.6 Equivalence Relations and Algebraic Structures (Optional) . . . . . . . . . 308 7 Cardinality 315 7.1 Finite Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 7.2 Countably In(cid:12)nite Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 7.3 Countable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 7.4 Uncountable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Review of Functions, Relations, and Cardinality 339 8 Real Numbers (Optional) 349 8.1 Axioms for R and Properties of Addition . . . . . . . . . . . . . . . . . . . 349 8.2 Algebraic Properties of Real Numbers . . . . . . . . . . . . . . . . . . . . . 356 8.3 Natural Numbers, Integers, and Rational Numbers . . . . . . . . . . . . . . 362 8.4 Ordering, Absolute Value, and Distance . . . . . . . . . . . . . . . . . . . . 368 8.5 Greatest Elements, Least Upper Bounds, and Completeness . . . . . . . . . 375 Suggestions for Further Reading 383 Index 385 Preface Thisbookcontainsanintroductiontomathematicalproofs,includingfundamentalmaterial onlogic,proofmethods,settheory,numbertheory,relations,functions,cardinality,andthe real number system. The book can serve as the main text for a proofs course taken by undergraduatemathematicsmajors.Nospeci(cid:12)cprerequisitesareneededbeyondfamiliarity with high school algebra. Most readers are likely to be college sophomores or juniors who have taken calculus and perhaps some linear algebra, but we do not assume any knowledge of these subjects. Anyone interested in learning advanced mathematics could use this text for self-study. Structure of the Book This book evolved from classes given by the author over many years to students at the College of William & Mary, Virginia Tech, and the United States Naval Academy. I have divided the book into 8 chapters and 54 sections, including three review sections. Each sectioncorrespondsverycloselytothematerialIcoverinasingle50-minutelecture.Sections are further divided into many short subsections, so that my suggested pacing can readily be adapted for classes that meet for 75 minutes, 80 minutes, or other time intervals. If the instructor omits all sections and topics designated as \optional," it should be just possible to (cid:12)nish all of the core material in a semester class that meets for 2250 minutes (typically forty-(cid:12)ve 50-minute meetings or thirty 75-minute meetings). More suggestions for possible course designs appear below. Ihavetriedtocapturethebestfeaturesoflivemathematicslecturesinthepagesofthis book. New material is presented to beginning students in small chunks that are easier to digest in a single reading or class meeting. The book maintains the friendly conversational style of a classroom presentation, without relinquishing the necessary level of precision and rigor. Throughout this text, you will (cid:12)nd the personal pronouns \I" (the author), \you" (the reader), and \we" (the author and the reader, working together), reminding us that teachingandlearningarefundamentallyhumanactivities.Teachingthismateriale(cid:11)ectively can be as di(cid:14)cult as learning it, and new instructors are often unsure how much time to spend on the fundamentals of logic and proof techniques. The organization of this book shows at a glance how one experienced teacher of proofs allocates time among the various core topics. The text develops mathematical ideas through a continual cycle of examples, theorems, proofs, summaries, and reviews. A new concept may be introduced brie(cid:13)y via an example near the end of one section, then examined in detail in the next section, then recalled as needed in later sections. Every section ends with an immediate review of the key points just covered, and three review sections give detailed summaries of each major section of the book. The essential core material is supplemented by more advanced topics that appear in clearly labeled optional sections. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.