ebook img

An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications PDF

141 Pages·2017·4.311 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications

Series ISSN: 2469-4215 PA T Synthesis Lectures on Visual Computing A N È Computer Graphics, Animation, Computational Photography and Imaging Series Editor: Brian R. Barsky, University of California, Berkeley A N I An Introduction to Laplacian Spectral Distance and Kernels N An Introduction to T R Theory, Computation, and Applications O D U C Giuseppe Patanè, CNR-IMATI T I Laplacian Spectral O N In geometry processing and shape analysis, several applications have been addressed through the T properties of the Laplacian spectral kernels and distances, such as commute-time, biharmonic, O L diffusion, and wave distances. A P Distance and Kernels Within this context, this book is intended to provide a common background on the L A definition and computation of the Laplacian spectral kernels and distances for geometry C I processing and shape analysis. To this end, we define a unified representation of the isotropic A N Theory, Computation, and Applications and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the S P associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, E C and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral T R distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and A L their discretization in terms of the Laplacian spectrum. As main applications, we discuss the D I design of smooth functions and the Laplacian smoothing of noisy scalar functions. S T A All the reviewed numerical schemes are discussed and compared in terms of robustness, N C approximation accuracy, and computational cost, thus supporting the reader in the selection of E the most appropriate with respect to shape representation, computational resources, and target A N application. D K E Giuseppe Patanè R N E L S AThbiso vuoltum SeY isN a TprHintEedS IvSersion of a work that appears in the Synthesis Digital Library of Engineering M O and Computer Science. Synthesis books provide concise, original presentations of important research R and development topics, published quickly, in digital and print formats. G A N Synthesis Lectures on Visual Computing & C L Computer Graphics, Animation, Computational Photography and Imaging A Y store.morganclaypool.com P O O L An Introduction to Laplacian Spectral Distances and Kernels Theory, Computation, and Applications iii Synthesis Lectures on Visual Computing Computer Graphics, Animation, Computational Photography, and Imaging Editor BrianA.Barsky,UniversityofCalifornia,Berkeley Thisseriespresentslecturesonresearchanddevelopmentinvisualcomputingforanaudienceof professionaldevelopers,researchers,andadvancedstudents.Topicsofinterestinclude computationalphotography,animation,visualization,specialeffects,gamedesign,image techniques,computationalgeometry,modeling,rendering,andothersofinteresttothevisual computingsystemdeveloperorresearcher. AnIntroductiontoLaplacianSpectralDistancesandKernels:Theory,Computation,and Applications GiuseppePatanè 2017 StochasticPartialDifferentialEquationsforComputerVisionwithUncertainData TobiasPreusser,RobertM.Kirby,andTorbenPätz 2017 MathematicalBasicsofMotionandDeformationinComputerGraphics,SecondEdition KenAnjyoandKiroyukiOchiai 2017 DigitalHeritageReconstructionUsingSuper-resolutionandInpainting MilindG.Padalkar,ManjunathV.Joshi,andNilayL.Khatri 2016 GeometricContinuityofCurvesandSurfaces PrzemyslawKiciak 2016 HeterogeneousSpatialData:Fusion,Modeling,andAnalysisforGISApplications GiuseppePatanèandMichelaSpagnuolo 2016 iv GeometricandDiscretePathPlanningforInteractiveVirtualWorlds MarceloKallmannandMubbasirKapadia 2016 AnIntroductiontoVerificationofVisualizationTechniques TiagoEtiene,RobertM.Kirby,andCláudioT.Silva 2015 VirtualCrowds:StepsTowardBehavioralRealism MubbasirKapadia,NuriaPelechano,JanAllbeck,andNormBadler 2015 FiniteElementMethodSimulationof3DDeformableSolids EftychiosSifakisandJernejBarbic 2015 EfficientQuadratureRulesforIlluminationIntegrals:FromQuasiMonteCarloto BayesianMonteCarlo RicardoMarques,ChristianBouville,LuísPauloSantos,andKadiBouatouch 2015 NumericalMethodsforLinearComplementarityProblemsinPhysics-BasedAnimation SarahNiebeandKennyErleben 2015 MathematicalBasicsofMotionandDeformationinComputerGraphics KenAnjyoandHiroyukiOchiai 2014 MathematicalToolsforShapeAnalysisandDescription SilviaBiasotti,BiancaFalcidieno,DanielaGiorgi,andMichelaSpagnuolo 2014 InformationTheoryToolsforImageProcessing MiquelFeixas,AntonBardera,JaumeRigau,QingXu,andMateuSbert 2014 GazingatGames:AnIntroductiontoEyeTrackingControl VeronicaSundstedt 2012 RethinkingQuaternions RonGoldman 2010 InformationTheoryToolsforComputerGraphics MateuSbert,MiquelFeixas,JaumeRigau,MiguelChover,andIvanViola 2009 v IntroductoryTilingTheoryforComputerGraphics CraigS.Kaplan 2009 PracticalGlobalIlluminationwithIrradianceCaching JaroslavKrivanekandPascalGautron 2009 WangTilesinComputerGraphics AresLagae 2009 VirtualCrowds:Methods,Simulation,andControl NuriaPelechano,JanM.Allbeck,andNormanI.Badler 2008 InteractiveShapeDesign Marie-PauleCani,TakeoIgarashi,andGeoffWyvill 2008 Real-TimeMassiveModelRendering Sung-euiYoon,EnricoGobbetti,DavidKasik,andDineshManocha 2008 HighDynamicRangeVideo KarolMyszkowski,RafalMantiuk,andGrzegorzKrawczyk 2008 GPU-BasedTechniquesforGlobalIlluminationEffects LászlóSzirmay-Kalos,LászlóSzécsi,andMateuSbert 2008 HighDynamicRangeImageReconstruction AslaM.Sá,PauloCezarCarvalho,andLuizVelho 2008 HighFidelityHapticRendering MiguelA.OtaduyandMingC.Lin 2006 ABlossomingDevelopmentofSplines StephenMann 2006 Copyright©2017byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. AnIntroductiontoLaplacianSpectralDistancesandKernels:Theory,Computation,andApplications GiuseppePatanè www.morganclaypool.com ISBN:9781681731391 paperback ISBN:9781681731407 ebook DOI10.2200/S00781ED1V01Y201705VCP029 APublicationintheMorgan&ClaypoolPublishersseries SynthesisLecturesonVisualComputing:ComputerGraphics,Animation, ComputationalPhotography,andImaging Lecture#29 SeriesEditor:BrianA.Barsky,UniversityofCalifornia,Berkeley SeriesISSN Print2469-4215 Electronic2469-4223 An Introduction to Laplacian Spectral Distances and Kernels Theory, Computation, and Applications Giuseppe Patanè CNR-IMATI SYNTHESISLECTURESONVISUALCOMPUTING:COMPUTER GRAPHICS,ANIMATION,COMPUTATIONALPHOTOGRAPHY,AND IMAGING#29 M &C Morgan&cLaypool publishers ABSTRACT Ingeometryprocessingandshapeanalysis,severalapplicationshavebeenaddressedthroughthe propertiesoftheLaplacianspectralkernelsanddistances,suchascommute-time,biharmonic, diffusion,andwavedistances. Withinthiscontext,thisbookisintendedtoprovideacommonbackgroundonthedefi- nitionandcomputationoftheLaplacianspectralkernelsanddistancesforgeometryprocessing andshapeanalysis.Tothisend,wedefineaunifiedrepresentationoftheisotropicandanisotropic discreteLaplacianoperatoronsurfacesandvolumes;then,weintroducetheassociateddifferen- tialequations,i.e.,theharmonicequation,theLaplacianeigenproblem,andtheheatequation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which gener- alize the commute-time, biharmonic,diffusion, and wavedistances, and their discretization in termsoftheLaplacianspectrum.Asmainapplications,wediscussthedesignofsmoothfunc- tionsandtheLaplaciansmoothingofnoisyscalarfunctions. All the reviewed numerical schemes are discussed and compared in terms of robustness, approximationaccuracy,andcomputationalcost,thussupportingthereaderintheselectionof themostappropriatewithrespecttoshaperepresentation,computationalresources,andtarget application. KEYWORDS Laplace-Beltrami operator, Laplacian spectrum, harmonic equation, Laplacian eigenproblem, heat equation, diffusion geometry, Laplacian spectral distance and kernels,spectralgeometryprocessing,shapeanalysis,numericalanalysis

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.