Table Of ContentSeries ISSN: 2469-4215 PA
T
Synthesis Lectures on Visual Computing A
N
È
Computer Graphics, Animation, Computational Photography and Imaging
Series Editor: Brian R. Barsky, University of California, Berkeley A
N
I
An Introduction to Laplacian Spectral Distance and Kernels N An Introduction to
T
R
Theory, Computation, and Applications O
D
U
C
Giuseppe Patanè, CNR-IMATI T
I Laplacian Spectral
O
N
In geometry processing and shape analysis, several applications have been addressed through the
T
properties of the Laplacian spectral kernels and distances, such as commute-time, biharmonic, O
L
diffusion, and wave distances. A
P Distance and Kernels
Within this context, this book is intended to provide a common background on the L
A
definition and computation of the Laplacian spectral kernels and distances for geometry C
I
processing and shape analysis. To this end, we define a unified representation of the isotropic A
N
Theory, Computation, and Applications
and anisotropic discrete Laplacian operator on surfaces and volumes; then, we introduce the S
P
associated differential equations, i.e., the harmonic equation, the Laplacian eigenproblem, E
C
and the heat equation. Filtering the Laplacian spectrum, we introduce the Laplacian spectral T
R
distances, which generalize the commute-time, biharmonic, diffusion, and wave distances, and A
L
their discretization in terms of the Laplacian spectrum. As main applications, we discuss the D
I
design of smooth functions and the Laplacian smoothing of noisy scalar functions. S
T
A
All the reviewed numerical schemes are discussed and compared in terms of robustness, N
C
approximation accuracy, and computational cost, thus supporting the reader in the selection of
E
the most appropriate with respect to shape representation, computational resources, and target A
N
application. D
K
E Giuseppe Patanè
R
N
E
L
S
AThbiso vuoltum SeY isN a TprHintEedS IvSersion of a work that appears in the Synthesis Digital Library of Engineering M
O
and Computer Science. Synthesis books provide concise, original presentations of important research
R
and development topics, published quickly, in digital and print formats. G
A
N
Synthesis Lectures on Visual Computing
&
C
L Computer Graphics, Animation, Computational Photography and Imaging
A
Y
store.morganclaypool.com P
O
O
L
An Introduction to
Laplacian Spectral Distances
and Kernels
Theory, Computation, and Applications
iii
Synthesis Lectures on
Visual Computing
Computer Graphics, Animation, Computational
Photography, and Imaging
Editor
BrianA.Barsky,UniversityofCalifornia,Berkeley
Thisseriespresentslecturesonresearchanddevelopmentinvisualcomputingforanaudienceof
professionaldevelopers,researchers,andadvancedstudents.Topicsofinterestinclude
computationalphotography,animation,visualization,specialeffects,gamedesign,image
techniques,computationalgeometry,modeling,rendering,andothersofinteresttothevisual
computingsystemdeveloperorresearcher.
AnIntroductiontoLaplacianSpectralDistancesandKernels:Theory,Computation,and
Applications
GiuseppePatanè
2017
StochasticPartialDifferentialEquationsforComputerVisionwithUncertainData
TobiasPreusser,RobertM.Kirby,andTorbenPätz
2017
MathematicalBasicsofMotionandDeformationinComputerGraphics,SecondEdition
KenAnjyoandKiroyukiOchiai
2017
DigitalHeritageReconstructionUsingSuper-resolutionandInpainting
MilindG.Padalkar,ManjunathV.Joshi,andNilayL.Khatri
2016
GeometricContinuityofCurvesandSurfaces
PrzemyslawKiciak
2016
HeterogeneousSpatialData:Fusion,Modeling,andAnalysisforGISApplications
GiuseppePatanèandMichelaSpagnuolo
2016
iv
GeometricandDiscretePathPlanningforInteractiveVirtualWorlds
MarceloKallmannandMubbasirKapadia
2016
AnIntroductiontoVerificationofVisualizationTechniques
TiagoEtiene,RobertM.Kirby,andCláudioT.Silva
2015
VirtualCrowds:StepsTowardBehavioralRealism
MubbasirKapadia,NuriaPelechano,JanAllbeck,andNormBadler
2015
FiniteElementMethodSimulationof3DDeformableSolids
EftychiosSifakisandJernejBarbic
2015
EfficientQuadratureRulesforIlluminationIntegrals:FromQuasiMonteCarloto
BayesianMonteCarlo
RicardoMarques,ChristianBouville,LuísPauloSantos,andKadiBouatouch
2015
NumericalMethodsforLinearComplementarityProblemsinPhysics-BasedAnimation
SarahNiebeandKennyErleben
2015
MathematicalBasicsofMotionandDeformationinComputerGraphics
KenAnjyoandHiroyukiOchiai
2014
MathematicalToolsforShapeAnalysisandDescription
SilviaBiasotti,BiancaFalcidieno,DanielaGiorgi,andMichelaSpagnuolo
2014
InformationTheoryToolsforImageProcessing
MiquelFeixas,AntonBardera,JaumeRigau,QingXu,andMateuSbert
2014
GazingatGames:AnIntroductiontoEyeTrackingControl
VeronicaSundstedt
2012
RethinkingQuaternions
RonGoldman
2010
InformationTheoryToolsforComputerGraphics
MateuSbert,MiquelFeixas,JaumeRigau,MiguelChover,andIvanViola
2009
v
IntroductoryTilingTheoryforComputerGraphics
CraigS.Kaplan
2009
PracticalGlobalIlluminationwithIrradianceCaching
JaroslavKrivanekandPascalGautron
2009
WangTilesinComputerGraphics
AresLagae
2009
VirtualCrowds:Methods,Simulation,andControl
NuriaPelechano,JanM.Allbeck,andNormanI.Badler
2008
InteractiveShapeDesign
Marie-PauleCani,TakeoIgarashi,andGeoffWyvill
2008
Real-TimeMassiveModelRendering
Sung-euiYoon,EnricoGobbetti,DavidKasik,andDineshManocha
2008
HighDynamicRangeVideo
KarolMyszkowski,RafalMantiuk,andGrzegorzKrawczyk
2008
GPU-BasedTechniquesforGlobalIlluminationEffects
LászlóSzirmay-Kalos,LászlóSzécsi,andMateuSbert
2008
HighDynamicRangeImageReconstruction
AslaM.Sá,PauloCezarCarvalho,andLuizVelho
2008
HighFidelityHapticRendering
MiguelA.OtaduyandMingC.Lin
2006
ABlossomingDevelopmentofSplines
StephenMann
2006
Copyright©2017byMorgan&Claypool
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin
anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations
inprintedreviews,withoutthepriorpermissionofthepublisher.
AnIntroductiontoLaplacianSpectralDistancesandKernels:Theory,Computation,andApplications
GiuseppePatanè
www.morganclaypool.com
ISBN:9781681731391 paperback
ISBN:9781681731407 ebook
DOI10.2200/S00781ED1V01Y201705VCP029
APublicationintheMorgan&ClaypoolPublishersseries
SynthesisLecturesonVisualComputing:ComputerGraphics,Animation,
ComputationalPhotography,andImaging
Lecture#29
SeriesEditor:BrianA.Barsky,UniversityofCalifornia,Berkeley
SeriesISSN
Print2469-4215 Electronic2469-4223
An Introduction to
Laplacian Spectral Distances
and Kernels
Theory, Computation, and Applications
Giuseppe Patanè
CNR-IMATI
SYNTHESISLECTURESONVISUALCOMPUTING:COMPUTER
GRAPHICS,ANIMATION,COMPUTATIONALPHOTOGRAPHY,AND
IMAGING#29
M
&C Morgan&cLaypool publishers
ABSTRACT
Ingeometryprocessingandshapeanalysis,severalapplicationshavebeenaddressedthroughthe
propertiesoftheLaplacianspectralkernelsanddistances,suchascommute-time,biharmonic,
diffusion,andwavedistances.
Withinthiscontext,thisbookisintendedtoprovideacommonbackgroundonthedefi-
nitionandcomputationoftheLaplacianspectralkernelsanddistancesforgeometryprocessing
andshapeanalysis.Tothisend,wedefineaunifiedrepresentationoftheisotropicandanisotropic
discreteLaplacianoperatoronsurfacesandvolumes;then,weintroducetheassociateddifferen-
tialequations,i.e.,theharmonicequation,theLaplacianeigenproblem,andtheheatequation.
Filtering the Laplacian spectrum, we introduce the Laplacian spectral distances, which gener-
alize the commute-time, biharmonic,diffusion, and wavedistances, and their discretization in
termsoftheLaplacianspectrum.Asmainapplications,wediscussthedesignofsmoothfunc-
tionsandtheLaplaciansmoothingofnoisyscalarfunctions.
All the reviewed numerical schemes are discussed and compared in terms of robustness,
approximationaccuracy,andcomputationalcost,thussupportingthereaderintheselectionof
themostappropriatewithrespecttoshaperepresentation,computationalresources,andtarget
application.
KEYWORDS
Laplace-Beltrami operator, Laplacian spectrum, harmonic equation, Laplacian
eigenproblem, heat equation, diffusion geometry, Laplacian spectral distance and
kernels,spectralgeometryprocessing,shapeanalysis,numericalanalysis