ebook img

An Introduction to Heavy-Tailed and Subexponential Distributions PDF

166 Pages·2013·1.416 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Heavy-Tailed and Subexponential Distributions

Springer Series in Operations Research and Financial Engineering Sergey Foss Dmitry Korshunov Stan Zachary An Introduction to Heavy-Tailed and Subexponential Distributions Second Edition Springer Series in Operations Research and Financial Engineering SeriesEditors: ThomasV.Mikosch SidneyI.Resnick StephenM.Robinson Forfurthervolumes: http://www.springer.com/series/3182 Sergey Foss • Dmitry Korshunov • Stan Zachary An Introduction to Heavy-Tailed and Subexponential Distributions Second Edition 123 SergeyFoss DmitryKorshunov DepartmentofActuarialMathematics SobolevInstituteofMathematics Heriot-WattUniversity Novosibirsk,Russia Riccarton,Edinburgh,UK StanZachary DepartmentofActuarialMathematics Heriot-WattUniversity Riccarton,Edinburgh,UK ISSN1431-8598 ISBN978-1-4614-7100-4 ISBN978-1-4614-7101-1(eBook) DOI10.1007/978-1-4614-7101-1 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013937950 MathematicsSubjectClassification(2010):60E99,62E20,60F10,60G50 ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface to the First Edition This text studies heavy-tailed distributions in probability theory, and especially convolutionsofsuchdistributions.Themaingoalistoprovideacompleteandcom- prehensiveintroductiontothetheoryoflong-tailedandsubexponentialdistributions whichincludesmanynovelelementsand,inparticular,isbasedontheregularuse oftheprincipleofasinglebigjump.Muchofthematerialappearsforthefirsttime intextform,including: – The establishment of new relations between known classes of subexponential distributionsandtheintroductionofimportantnewclasses – The development of some important new concepts, including those of h-insensitivityandlocalsubexponentiality – The presentation of new and direct probabilistic proofs of known asymptotic results A number of recent textbooks and monographs contain some elements of the presenttheory,notablythosebyS.Asmussen[1,2],P.Embrechts,C.Klu¨ppelberg, and T. Mikosch [24], T. Rolski, H. Schmidli, V. Schmidt, and J. Teugels [47], and A. Borovkovand K. Borovkov[11]. Further,the monographby N. Bingham, C. Goldie, and J. Teugels [9] comprehensively develops the theory of regularly varying functions and distributions; the latter form an important subclass of the subexponentialdistributions.We have beeninfluencedby these booksand by fur- thercontactswiththeirauthors. Chapters2and3ofthepresentmonographdealcomprehensivelywiththeprop- ertiesofheavy-tailed,long-tailedandsubexponentialdistributions,andgiveappli- cationstorandomsums.Chapter4developsconceptsoflocalsubexponentialityand givesfurtherapplications.Finally,Chap.5studiesthedistributionofthemaximum of a randomwalk with negativedriftand heavy-tailedincrements;notablyit con- tainsnewandshortprobabilisticproofsforthetailasymptoticsofthisdistribution forbothfiniteandinfinitetimehorizons.Thestudyofheavy-taileddistributionsin more general probabilitymodels—for example, Markov-modulatedmodels, those with dependencies, and continuous-time models—is postponed until such future date as the authorsmay again find some spare time. Nevertheless, the same basic principlesapplythereasaredevelopedinthepresenttext. v vi PrefacetotheFirstEdition Theauthorsgratefullyacknowledgeafruitfulcollaborationonheavy-tailsissues with their co-authors: Søren Asmussen, Franc¸ois Baccelli, Aleksandr Borovkov, Onno Boxma, Denis Denisov, Takis Konstantopoulos, Marc Lelarge, Andrew Richards,andVolkerSchmidt. Wearethankfultomanycolleagues,inadditiontomentionedabove,forhelpful discussionsandcontributions,notablytoVsevolodShneerandBertZwart.Wethank SergeiFedotovforpointingoutlinkstoanalogousproblemsinStatisticalPhysics. We are also verygratefulboth to ThomasMikosch andto the staff of Springer fortheirsuggestionsandassistanceinpublishingthistext. This book was mostly written while the authors worked, together and indi- vidually, in Edinburgh and Novosibirsk; we thank our home institutions, Heriot- Watt University and the Sobolev Institute of Mathematics. A first version of this manuscript was finished while the authors stayed at the Mathematisches Forschungsinstitut Oberwolfach, under the Research in Pairs programme from March 23 to April 5, 2008; we thank the Institute for its great hospitality and support.Thefinalversionwaspreparedin Cambridgeduringourstay atthe Isaac NewtonInstituteforMathematicalSciencesundertheframeworkoftheprogramme StochasticProcessesinCommunicationSciences,January–June,2010. Alistoferrataandnotesonfurtherdevelopmentstothismanuscriptwillbemain- tainedathttps://sites.google.com/site/ithtsd/https://sites.google.com/site/ithtsd/. Edinburgh SergeyFoss Novosibirsk DmitryKorshunov OberwolfachandCambridge StanZachary Preface ThisisanextendedandcorrectedversionoftheFirstEdition.Themajorchangesare: – Chapters 2 through 5 are now appended by lists of problems and exercises. Wealsoprovideanswersandanumberofsolutions. – Chapter5includesthreenewsectionsonapplications,toqueueingtheory,torisk, andtobranchingprocesses,anda newsection describingtimeto exceeda high levelbyarandomwalkanditslocationaroundthattime. – Sections5.1,5.2and5.9areextended. SergeyFoss August2012 DmitryKorshunov vii Contents 1 Introduction................................................... 1 2 Heavy-TailedandLong-TailedDistributions ...................... 7 2.1 Heavy-TailedDistributions................................... 7 2.2 CharacterisationofHeavy-TailedDistributions inTermsofGeneralisedMoments............................. 11 2.3 LowerLimitforTailsofConvolutions ......................... 14 2.4 Long-TailedFunctionsandTheirProperties .................... 17 2.5 Long-TailedDistributions.................................... 21 2.6 Long-TailedDistributionsandIntegratedTails .................. 22 2.7 ConvolutionsofLong-TailedDistributions ..................... 24 2.8 h-InsensitiveDistributions ................................... 31 2.9 Comments ................................................ 38 2.10 Problems ................................................. 39 3 SubexponentialDistributions.................................... 43 3.1 SubexponentialDistributionsonthePositiveHalf-Line........... 43 3.2 SubexponentialDistributionsontheWholeRealLine ............ 45 3.3 SubexponentialityandWeakTail-Equivalence .................. 49 3.4 TheClassS∗ ofStrongSubexponentialDistributions............. 53 3.5 SufficientConditionsforSubexponentiality..................... 57 3.6 ConditionsforSubexponentialityinTerms ofTruncatedExponentialMoments ........................... 59 3.7 SIsaProperSubsetofL .................................... 62 3.8 DoesF ∈SImplyThatF ∈S?............................... 63 I 3.9 ClosurePropertiesoftheClassofSubexponentialDistributions.... 65 3.10 Kesten’sBound ............................................ 67 3.11 SubexponentialityandRandomlyStoppedSums ................ 69 3.12 Comments ................................................ 71 3.13 Problems ................................................. 72 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.