ebook img

An introduction to econometric theory PDF

236 Pages·2018·3.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An introduction to econometric theory

AnIntroductiontoEconometricTheory An Introduction to Econometric Theory JamesDavidson UniversityofExeter UK Thiseditionfirstpublished2018 ©2018JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions. TherightofJamesDavidsontobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice 9600GarsingtonRoad,Oxford,OX42DQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthe publisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovide orrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData: Names:Davidson,James,1944-author. Title:Anintroductiontoeconometrictheory/byProf.JamesDavidson,UniversityofExeter. Description:Hoboken,NJ:JohnWiley&Sons,Inc.,[2018]|Includesbibliographicalreferencesandindex.| Identifiers:LCCN2018009800(print)|LCCN2018011202(ebook)|ISBN9781119484936(pdf)| ISBN9781119484929(epub)|ISBN9781119484882(cloth) Subjects:LCSH:Econometrics. Classification:LCCHB139(ebook)|LCCHB139.D36642018(print)|DDC330.01/5195–dc23 LCrecordavailableathttps://lccn.loc.gov/2018009800 CoverDesign:Wiley CoverImage:©maciek905/iStockphoto Setin10/12ptWarnockProbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 v Contents ListofFigures ix Preface xi AbouttheCompanionWebsite xv PartI Fitting 1 1 ElementaryDataAnalysis 3 1.1 VariablesandObservations 3 1.2 SummaryStatistics 4 1.3 Correlation 6 1.4 Regression 10 1.5 ComputingtheRegressionLine 12 1.6 MultipleRegression 16 1.7 Exercises 18 2 MatrixRepresentation 21 2.1 SystemsofEquations 21 2.2 MatrixAlgebraBasics 23 2.3 RulesofMatrixAlgebra 26 2.4 PartitionedMatrices 27 2.5 Exercises 28 3 SolvingtheMatrixEquation 31 3.1 MatrixInversion 31 3.2 DeterminantandAdjoint 34 3.3 TransposesandProducts 37 3.4 Cramer’sRule 38 3.5 PartitioningandInversion 39 3.6 ANoteonComputation 41 3.7 Exercises 43 4 TheLeastSquaresSolution 47 4.1 LinearDependenceandRank 47 4.2 TheGeneralLinearRegression 50 vi Contents 4.3 DefiniteMatrices 52 4.4 MatrixCalculus 56 4.5 GoodnessofFit 57 4.6 Exercises 59 PartII Modelling 63 5 ProbabilityDistributions 65 5.1 ARandomExperiment 65 5.2 PropertiesoftheNormalDistribution 68 5.3 ExpectedValues 72 5.4 DiscreteRandomVariables 75 5.5 Exercises 80 6 MoreonDistributions 83 6.1 RandomVectors 83 6.2 TheMultivariateNormalDistribution 84 6.3 OtherContinuousDistributions 87 6.4 Moments 90 6.5 ConditionalDistributions 92 6.6 Exercises 94 7 TheClassicalRegressionModel 97 7.1 TheClassicalAssumptions 97 7.2 TheModel 99 7.3 PropertiesofLeastSquares 101 7.4 TheProjectionMatrices 103 7.5 TheTrace 104 7.6 Exercises 106 8 TheGauss-MarkovTheorem 109 8.1 ASimpleExample 109 8.2 EfficiencyintheGeneralModel 111 8.3 FailureoftheAssumptions 113 8.4 GeneralizedLeastSquares 114 8.5 WeightedLeastSquares 116 8.6 Exercises 118 PartIII Testing 121 9 EigenvaluesandEigenvectors 123 9.1 TheCharacteristicEquation 123 9.2 ComplexRoots 124 9.3 Eigenvectors 126 9.4 Diagonalization 128 Contents vii 9.5 OtherProperties 130 9.6 AnInterestingResult 131 9.7 Exercises 133 10 TheGaussianRegressionModel 135 10.1 TestingHypotheses 135 10.2 IdempotentQuadraticForms 137 10.3 ConfidenceRegions 140 10.4 tStatistics 141 10.5 TestsofLinearRestrictions 144 10.6 ConstrainedLeastSquares 146 10.7 Exercises 149 11 PartitioningandSpecification 153 11.1 ThePartitionedRegression 153 11.2 Frisch-Waugh-LovellTheorem 155 11.3 MisspecificationAnalysis 156 11.4 SpecificationTesting 159 11.5 StabilityAnalysis 160 11.6 PredictionTests 162 11.7 Exercises 163 PartIV Extensions 167 12 RandomRegressors 169 12.1 ConditionalProbability 169 12.2 ConditionalExpectations 170 12.3 StatisticalModelsContrasted 174 12.4 TheStatisticalAssumptions 176 12.5 PropertiesofOLS 178 12.6 TheGaussianModel 182 12.7 Exercises 183 13 IntroductiontoAsymptotics 187 13.1 TheLawofLargeNumbers 187 13.2 ConsistentEstimation 192 13.3 TheCentralLimitTheorem 195 13.4 AsymptoticNormality 198 13.5 MultipleRegression 201 13.6 Exercises 203 14 AsymptoticEstimationTheory 207 14.1 LargeSampleEfficiency 207 14.2 InstrumentalVariables 208 14.3 MaximumLikelihood 210 14.4 GaussianML 213 viii Contents 14.5 PropertiesofMLEstimators 214 14.6 LikelihoodInference 216 14.7 Exercises 218 PartV Appendices 221 A TheBinomialCoefficients 223 B TheExponentialFunction 225 C EssentialCalculus 227 D TheGeneralizedInverse 229 RecommendedReading 233 Index 235 ix ListofFigures Figure1.1 LongandshortUKinterestrates 7 Figure1.2 Scatterplotoftheinterestrateseries 8 Figure1.3 Theregressionline 10 Figure1.4 Theregressionlineandthedata 10 Figure1.5 Theregressionresidual 11 Figure1.6 Plotofy=2+2x +x 17 1 2 Figure5.1 Archerytargetscatter 66 Figure5.2 Archerytarget,frequencycontours 67 Figure5.3 Bivariatenormalprobabilitydensityfunction 67 Figure5.4 Normalp.d.f.,shadedareashowsPr(1<X <2) 70 Figure5.5 Binomialprobabilitiesandthenormalp.d.f.Source:Figure23.2of StochasticLimitTheory:AnIntroductionforEconometricians(Advanced TextsinEconometrics)byJamesDavidson(1994).Reproducedby permissionofOxfordUniversityPress. 77 Figure5.6 Prussiancavalrydataandpredictions 79 Figure6.1 ThestandardCauchyp.d.f. 88 Figure10.1 Regressionconfidenceregions,k =2.Source:Figure2.1ofEconometric TheorybyJamesDavidson,BlackwellPublishers2000.Reproducedby permissionofWiley-Blackwell. 141 Figure13.1 P.d.fofthesumofthreeuniformr.v.s,withnormalp.d.f.forcomparison. Source:Figure23.1ofStochasticLimitTheory:AnIntroductionfor Econometricians(AdvancedTextsinEconometrics)byJamesDavidson (1994).ReproducedbypermissionofOxfordUniversityPress. 197 xi Preface This book has its origin in a course of lectures offered to second year economics undergraduateswhoaresimultaneouslytakingacoremoduleinappliedeconometrics. Courses of the latter type, typically based on excellent texts such as Wooldridge’s Introductory Econometrics or Stock and Watson’s Introduction to Econometrics, teach modern techniques of model building and inference, but necessarily a good deal of technical material has to be taken on trust. This is like following a cake recipe that dictates ingredients in given proportions and then the baking time and oven temperature but does not tell you why these instructions give a good result. One can drive a car without knowing anything about spark plugs and transmissions, but one cannot so easily fix it. For students with the requisite motivation, these lectures have aimedtoprovidealookunderthebonnet(beingBritish;theirAmericancounterparts wouldofcoursebewantingtolookunderthehood). Aproblemhasbeenthatnoverysuitabletextbookhasexistedtoaccompanythelec- tures.Thereadinglisthashadtocitechaptersfromvariouslargeandindigestibletexts, often with special reference to the technical appendices. To master the mathematics underlyingeconometricmethodsrequiresadetailedstudyofmatrixalgebraandasound graspofdistributiontheory,andtofindreadingswiththerightfocusandattheright levelisnoteasy.Sometimes,bookswrittenagenerationagoandnowoutofprintappear todoabetterjobthanmoderntexts.Hence,thisbook. Jargon, obscure conventions, and austere expository style all conspire to make this kindofmaterialhardforbeginnerstoaccess.Thisbookmayormaynotsucceedinits aim,butitsaimisclear,whichistobesuccessfullyreadbystudentswhodonothave toomanytechniquesattheirfingertips.Aslittleaspossibleisdonewithoutafullexpla- nationandcarefulcross-referencingtorelevantresults.Thismaymakethediscussion long-windedandrepetitiveattimes,buthopefullyitishelpfulifateverystagethereader istoldwhythingsarebeingdone,andwhatpreviousmaterialisinformingtheargument. Thestyleisdeliberatelyinformal,withnumberedtheoremsandlemmasavoided.How- ever, there is no dumbing down! Very few technical results are quoted without some formofexplanation,demonstration,orproof. It is expected that readers will have taken the standard mathematics and statistics courses for economics undergraduates, but the prior knowledge required is actually quitesmall.Thetreatmentisasfaraspossibleself-contained,withalmostallthemath- ematicalconceptsneededbeingexplainedeitherinsituorintheappendices.

Description:
An Introduction to Econometric Theory offers a text to help in the mastery of the mathematics that underlie econometric methods and includes a detailed study of matrix algebra and distribution theory. Designed to be an accessible resource, the text explains in clear language why things are being don
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.