ebook img

An Introduction to Computational Physics PDF

402 Pages·2006·1.749 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Computational Physics

An Introduction to Computational Physics Numericalsimulationisnowanintegratedpartofscienceandtechnology.Now initssecondedition,thiscomprehensivetextbookprovidesanintroductionto thebasicmethodsofcomputationalphysics,aswellasanoverviewofrecent progressinseveralareasofscientificcomputing.Theauthorpresentsmany step-by-stepexamples,includingprogramlistingsinJavaTM,ofpractical numericalmethodsfrommodernphysicsandareasinwhichcomputational physicshasmadesignificantprogressinthelastdecade. Thefirsthalfofthebookdealswithbasiccomputationaltoolsandroutines, coveringapproximationandoptimizationofafunction,differentialequations, spectralanalysis,andmatrixoperations.Importantconceptsareillustratedby relevantexamplesateachstage.Theauthoralsodiscussesmoreadvanced topics,suchasmoleculardynamics,modelingcontinuoussystems,Monte Carlomethods,thegeneticalgorithmandprogramming,andnumerical renormalization. Thisneweditionhasbeenthoroughlyrevisedandincludesmanymore examplesandexercises.Itcanbeusedasatextbookforeitherundergraduateor first-yeargraduatecoursesoncomputationalphysicsorscientificcomputation. Itwillalsobeausefulreferenceforanyoneinvolvedincomputationalresearch. TaoPangisProfessorofPhysicsattheUniversityofNevada,LasVegas. FollowinghishighereducationatFudanUniversity,oneofthemostprestigious institutionsinChina,heobtainedhisPh.D.incondensedmattertheoryfromthe UniversityofMinnesotain1989.HethenspenttwoyearsasaMillerResearch FellowattheUniversityofCalifornia,Berkeley,beforejoiningthephysics facultyattheUniversityofNevada,LasVegasinthefallof1991.Hehasbeen ProfessorofPhysicsatUNLVsince2002.Hismainareasofresearchinclude condensedmattertheoryandcomputationalphysics. An Introduction to Computational Physics Second Edition Tao Pang University of Nevada, Las Vegas cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press cb2 2ru The Edinburgh Building, Cambridge , UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Informationo nthi stitle :www.cambri dge.org/9780521825696 © T. Pang 2006 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2006 isbn-13 978-0-511-14046-4 eBook (NetLibrary) isbn-10 0-511-14046-0 eBook (NetLibrary) isbn-13 978-0-521-82569-6 hardback isbn-10 0-521-82569-5 hardback isbn-13 978-0-521-53276-1 isbn-10 0-521-53276-0 url Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. ToYunhua,forenduringlove Contents Prefacetofirstedition xi Preface xiii Acknowledgments xv 1 Introduction 1 1.1 Computationandscience 1 1.2 Theemergenceofmoderncomputers 4 1.3 Computeralgorithmsandlanguages 7 Exercises 14 2 Approximationofafunction 16 2.1 Interpolation 16 2.2 Least-squaresapproximation 24 2.3 TheMillikanexperiment 27 2.4 Splineapproximation 30 2.5 Random-numbergenerators 37 Exercises 44 3 Numericalcalculus 49 3.1 Numericaldifferentiation 49 3.2 Numericalintegration 56 3.3 Rootsofanequation 62 3.4 Extremesofafunction 66 3.5 Classicalscattering 70 Exercises 76 4 Ordinarydifferentialequations 80 4.1 Initial-valueproblems 81 4.2 TheEulerandPicardmethods 81 4.3 Predictor–correctormethods 83 4.4 TheRunge–Kuttamethod 88 4.5 Chaoticdynamicsofadrivenpendulum 90 4.6 Boundary-valueandeigenvalueproblems 94 vii viii Contents 4.7 Theshootingmethod 96 4.8 LinearequationsandtheSturm–Liouvilleproblem 99 4.9 Theone-dimensionalSchro¨dingerequation 105 Exercises 115 5 Numericalmethodsformatrices 119 5.1 Matricesinphysics 119 5.2 Basicmatrixoperations 123 5.3 Linearequationsystems 125 5.4 Zerosandextremesofmultivariablefunctions 133 5.5 Eigenvalueproblems 138 5.6 TheFaddeev–Leverriermethod 147 5.7 Complexzerosofapolynomial 149 5.8 Electronicstructuresofatoms 153 5.9 TheLanczosalgorithmandthemany-bodyproblem 156 5.10 Randommatrices 158 Exercises 160 6 Spectralanalysis 164 6.1 Fourieranalysisandorthogonalfunctions 165 6.2 DiscreteFouriertransform 166 6.3 FastFouriertransform 169 6.4 Powerspectrumofadrivenpendulum 173 6.5 Fouriertransforminhigherdimensions 174 6.6 Waveletanalysis 175 6.7 Discretewavelettransform 180 6.8 Specialfunctions 187 6.9 Gaussianquadratures 191 Exercises 193 7 Partialdifferentialequations 197 7.1 Partialdifferentialequationsinphysics 197 7.2 Separationofvariables 198 7.3 Discretizationoftheequation 204 7.4 Thematrixmethodfordifferenceequations 206 7.5 Therelaxationmethod 209 7.6 Groundwaterdynamics 213 7.7 Initial-valueproblems 216 7.8 Temperaturefieldofanuclearwasterod 219 Exercises 222 8 Moleculardynamicssimulations 226 8.1 Generalbehaviorofaclassicalsystem 226 Contents ix 8.2 Basicmethodsformany-bodysystems 228 8.3 TheVerletalgorithm 232 8.4 Structureofatomicclusters 236 8.5 TheGearpredictor–correctormethod 239 8.6 Constantpressure,temperature,andbondlength 241 8.7 Structureanddynamicsofrealmaterials 246 8.8 Abinitiomoleculardynamics 250 Exercises 254 9 Modelingcontinuoussystems 256 9.1 Hydrodynamicequations 256 9.2 Thebasicfiniteelementmethod 258 9.3 TheRitzvariationalmethod 262 9.4 Higher-dimensionalsystems 266 9.5 Thefiniteelementmethodfornonlinearequations 269 9.6 Theparticle-in-cellmethod 271 9.7 Hydrodynamicsandmagnetohydrodynamics 276 9.8 ThelatticeBoltzmannmethod 279 Exercises 282 10 MonteCarlosimulations 285 10.1 Samplingandintegration 285 10.2 TheMetropolisalgorithm 287 10.3 Applicationsinstatisticalphysics 292 10.4 Criticalslowingdownandblockalgorithms 297 10.5 VariationalquantumMonteCarlosimulations 299 10.6 Green’sfunctionMonteCarlosimulations 303 10.7 Two-dimensionalelectrongas 307 10.8 Path-integralMonteCarlosimulations 313 10.9 Quantumlatticemodels 315 Exercises 320 11 Geneticalgorithmandprogramming 323 11.1 Basicelementsofageneticalgorithm 324 11.2 TheThomsonproblem 332 11.3 Continuousgeneticalgorithm 335 11.4 Otherapplications 338 11.5 Geneticprogramming 342 Exercises 345 12 Numericalrenormalization 347 12.1 Thescalingconcept 347 12.2 Renormalizationtransform 350

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.