ebook img

An Introduction to Analysis (Global Edition) PDF

696 Pages·2021·6.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Introduction to Analysis (Global Edition)

This is a special edition of an established title widely used by GLOBAL GLOBAL colleges and universities throughout the world. Pearson published this exclusive edition for the benefit of students outside the EDITION EDITION United States and Canada. If you purchased this book within EG DL the United States or Canada, you should be aware that it has ITO IOB been imported without the approval of the Publisher or Author. NAL An Introduction to Analysis, now in its fourth edition, introduces the concepts of analysis in a one-dimensional setting before delving deep into multidimensional theory. Building on students’ A existing knowledge of calculus and linear algebra, this text is a great resource for students N taking courses in advanced calculus, Analysis I, or real analysis. The author makes the study T I of mathematics easier by beginning each abstruse topic with a snippet that describes, in a N O nutshell, the concept about to be covered. With a collection of questions ranging from basic T A R to challenging, end-of-section exercises meet each student at their level, bringing beginners up N O to speed and offering additional practice to more advanced students. With its core material A D (which focuses on fundamental principles of analysis) and enrichment material (which explores L U challenging concepts), this text enables students to apply theory to practice and construct their Y C S own proofs. I T S I O Key Features N • Introductory material, previously scattered across several sections, has now been consolidated and presented under a new section named ‘Introduction’ in Chapter 1. • Assuming that students taking this course are familiar with basic calculus, this text has replaced most of the beginning, computational, calculus-style exercises with slightly more conceptual E F ones, helping students develop a deeper understanding of the subject. D O IT U • True–false questions scattered across the first six chapters clarify common misconceptions, and I R O T by splitting difficult questions into several parts, the book helps students get to solutions in a N H AN INTRODUCTION structured, step-by-step format. • Complicated proofs are preceded by short paragraphs labeled ‘Strategy’, which demonstrate why the proof works. TO ANALYSIS • In addition to the core material it contains, the book also features enrichment sections and optional W content, which instructors can also choose to assign to their students. a d e FOURTH EDITION WILLIAM R. WADE CVR_WADE7874_04_GE_CVR_Vivar.indd 1 28/09/21 12:36 PM “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 1 — #1 An Introduction to Analysis “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 2 — #2 This page is intentionally left blank “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 3 — #3 An Introduction to Analysis Fourth Edition Global Edition WilliamR.Wade UniversityofTennessee Pearson Education Limited KAO Two KAO Park Hockham Way Harlow CM17 9SR United Kingdom and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsonglobaleditions.com Please contact https://support.pearson.com/getsupport/s/contactsupport with any queries on this content © Pearson Education Limited 2022 The rights of William R. Wade to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Authorized adaptation from the United States edition, entitled An Introduction to Analysis, 4th Edition, ISBN 978-0-13- 470762-4 by William R. Wade, published by Pearson Education © 2018. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/. All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners. PEARSON, ALWAYS LEARNING, and MYLAB are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates. Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees, or distributors. ISBN 10: 1-292-35787-8 ISBN 13: 978-1-292-35787-4 eBook ISBN 13: 978-1-292-35788-1 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Typeset in TimesTen-Roman 10.46 by Integra Software Services Pvt. Ltd. eBook formatted by B2R Technologies Pvt. Ltd. “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 5 — #5 To Cherri, Peter, and Benjamin “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 6 — #6 This page is intentionally left blank “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 7 — #7 Contents Preface 10 PARTI ONE-DIMENSIONALTHEORY 1 TheRealNumberSystem 15 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 OrderedFieldAxioms . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3 CompletenessAxiom . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4 MathematicalInduction . . . . . . . . . . . . . . . . . . . . . . . 37 1.5 InverseFunctionsandImages . . . . . . . . . . . . . . . . . . . 43 1.6 CountableandUncountableSets . . . . . . . . . . . . . . . . . . 49 2 SequencesinR 55 2.1 LimitsofSequences . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2 LimitTheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3 Bolzano–WeierstrassTheorem . . . . . . . . . . . . . . . . . . . 67 2.4 CauchySequences . . . . . . . . . . . . . . . . . . . . . . . . . . 72 ∗2.5 LimitsSupremumandInfimum . . . . . . . . . . . . . . . . . . . 75 3 FunctionsonR 82 3.1 Two-SidedLimits . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.2 One-SidedLimitsandLimitsatInfinity . . . . . . . . . . . . . . 90 3.3 Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.4 UniformContinuity . . . . . . . . . . . . . . . . . . . . . . . . . 106 4 DifferentiabilityonR 112 4.1 TheDerivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2 DifferentiabilityTheorems . . . . . . . . . . . . . . . . . . . . . 119 4.3 TheMeanValueTheorem . . . . . . . . . . . . . . . . . . . . . . 123 4.4 Taylor’sTheoremandl’Hôpital’sRule . . . . . . . . . . . . . . . 131 4.5 InverseFunctionTheorems . . . . . . . . . . . . . . . . . . . . . 139 5 IntegrabilityonR 144 5.1 TheRiemannIntegral . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2 RiemannSums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.3 TheFundamentalTheoremofCalculus . . . . . . . . . . . . . . 166 5.4 ImproperRiemannIntegration . . . . . . . . . . . . . . . . . . . 177 ∗5.5 FunctionsofBoundedVariation . . . . . . . . . . . . . . . . . . 184 ∗5.6 ConvexFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7 “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 8 — #8 8 Contents 6 InfiniteSeriesofRealNumbers 198 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 6.2 SerieswithNonnegativeTerms . . . . . . . . . . . . . . . . . . . 206 6.3 AbsoluteConvergence . . . . . . . . . . . . . . . . . . . . . . . 212 6.4 AlternatingSeries . . . . . . . . . . . . . . . . . . . . . . . . . . 223 ∗6.5 EstimationofSeries . . . . . . . . . . . . . . . . . . . . . . . . . 228 ∗6.6 AdditionalTests . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7 InfiniteSeriesofFunctions 236 7.1 UniformConvergenceofSequences . . . . . . . . . . . . . . . . 236 7.2 UniformConvergenceofSeries . . . . . . . . . . . . . . . . . . 244 7.3 PowerSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 7.4 AnalyticFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 263 ∗7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 PARTII MULTIDIMENSIONALTHEORY 8 EuclideanSpaces 281 8.1 AlgebraicStructure . . . . . . . . . . . . . . . . . . . . . . . . . 281 8.2 PlanesandLinearTransformations. . . . . . . . . . . . . . . . . 293 n 9 ConvergenceinR 302 9.1 TopologyofRn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 9.2 Interior,Closure,andBoundary . . . . . . . . . . . . . . . . . . 311 ∗9.3 CompactSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 9.4 Heine–BorelTheorem . . . . . . . . . . . . . . . . . . . . . . . . 319 9.5 LimitsofSequences . . . . . . . . . . . . . . . . . . . . . . . . . 324 9.6 LimitsofFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . 328 9.7 ContinuousFunctions . . . . . . . . . . . . . . . . . . . . . . . . 338 ∗9.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 10 MetricSpaces 356 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 10.2 Interior,Closure,andBoundary . . . . . . . . . . . . . . . . . . 364 10.3 CompactSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 10.4 ConnectedSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 10.5 LimitsofFunctions. . . . . . . . . . . . . . . . . . . . . . . . . . 382 10.6 ContinuousFunctions . . . . . . . . . . . . . . . . . . . . . . . . 386 ∗10.7 Stone–WeierstrassTheorem. . . . . . . . . . . . . . . . . . . . . 391 n 11 DifferentiabilityonR 397 11.1 PartialDerivativesandPartialIntegrals . . . . . . . . . . . . . . 397 11.2 TheDefinitionofDifferentiability . . . . . . . . . . . . . . . . . 408 11.3 Derivatives,Differentials,andTangentPlanes . . . . . . . . . . 417 11.4 TheChainRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 11.5 TheMeanValueTheoremandTaylor’sFormula . . . . . . . . . 430 “A01_WADE7874_04_GE_FM” — 2021/10/11 — 17:23 — page 9 — #9 Contents 9 11.6 TheInverseFunctionTheorem . . . . . . . . . . . . . . . . . . . 438 ∗11.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 n 12 IntegrationonR 463 12.1 JordanRegions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 12.2 RiemannIntegrationonJordanRegions . . . . . . . . . . . . . 476 12.3 IteratedIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 12.4 ChangeofVariables . . . . . . . . . . . . . . . . . . . . . . . . . 504 ∗12.5 PartitionsofUnity . . . . . . . . . . . . . . . . . . . . . . . . . . 517 ∗12.6 TheGammaFunctionandVolume . . . . . . . . . . . . . . . . . 528 13 FundamentalTheoremsofVectorCalculus 537 13.1 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 13.2 OrientedCurves . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 13.3 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 13.4 OrientedSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 569 13.5 TheoremsofGreenandGauss . . . . . . . . . . . . . . . . . . . 579 13.6 Stokes’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 589 14 FourierSeries 598 ∗14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 ∗14.2 SummabilityofFourierSeries . . . . . . . . . . . . . . . . . . . 605 ∗14.3 GrowthofFourierCoefficients . . . . . . . . . . . . . . . . . . . 612 ∗14.4 ConvergenceofFourierSeries . . . . . . . . . . . . . . . . . . . 620 ∗14.5 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 Appendices 633 A. AlgebraicLaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 B. Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638 C. MatricesandDeterminants . . . . . . . . . . . . . . . . . . . . . 643 D. QuadricSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 E. VectorCalculusandPhysics . . . . . . . . . . . . . . . . . . . . . 655 F. EquivalenceRelations . . . . . . . . . . . . . . . . . . . . . . . . 658 References 660 AnswersandHintstoSelectedExercises 661 SubjectIndex 681 NotationIndex 693

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.