ebook img

An Intelligent Prosthetic Hand using Hybrid Actuation PDF

219 Pages·2010·8.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An Intelligent Prosthetic Hand using Hybrid Actuation

An Intelligent Prosthetic Hand using Hybrid Actuation and Myoelectric Control by Beng Guey Lau Submitted in accordancewith therequirements forthedegreeof Doctorof Philosophy TheUniversityof Leeds School of Mechanical Engineering October2009 Thecandidateconfirms that theworksubmittedis his/herownandthat appropriate credit has beengivenwherereferencehas beenmadetotheworkofothers. This copyhas beensuppliedontheunderstandingthat it is copyright material and that no quotationfrom thethesis maybepublished without properacknowledgement. Page|i Abstract This thesis details the design and development of an intelligent prosthetic hand based on hybrid DC and Shape Memory Alloy (SMA) actuation and controlled by onlytwomyoelectricsensors. A prosthesis as a tool makes no pretence of trying to replace the lost limb physio- logically but it works as an aid to help provide some of the lost functions and is an interchangeabledevicewornandusedas needed. Much research has been carried out to develop artificial prosthetic hands with capa- bilities similar to the human hand. The human hand is a verycomplex graspingtool, that can handle objects of different size, weight and shape; however, they are far from providingits manipulationcapabilities. This is formanydifferent reasons,such as active bending is limited to two or three joints and user-unfriendliness. These limitations are present in commercial prosthetic hands, together with others always complained about by patients and amputees, such as inability to provide enough grasping functionality and heavy weight. Several robotic and anthropomorphic hands may have sufficient active degrees of freedom to allow dexterity comparable to that of the human hand. Unfortunately, they cannot be used as prostheses due to their physical characteristic that poses several serious limitations on human-hand interaction. Hence, the motivation for this research is to investigate the use of a hybrid actuation mechanism in the design and development of an intelligent prosthetic hand. This work highlights user-friendliness and involves a proper mechanical design with moreactivedegrees offreedom andincorporatinganintelligent control system. A system with a finger prototype is considered. Testing through simulation and physical models reveals a number of limitations. A hybrid actuation system, to in- crease the finger active degrees of freedom is therefore developed, with a mecha- nism consisting of DC and SMA actuators. Besides, only two myoelectrodes chan- nels (enhancing the user-friendliness of the device) are used for the system control input signal. Page|ii Two novel features are developed in the new prosthetic hand. Firstly, its hybrid ac- tuation mechanism has the advantage of increasing the active degrees of freedom; secondly, using onlytwo myoelectric sensors has potential for controlling more than threepatterns offingers movements. By using artificial neural network patterns classification technique, three and five patterns of wrist joint movement corresponding to finger movement can be recog- nisedas morethan85%correct andfurthermore,sevenas 70%correct. Page|iii Acknowledgements I’d like to thank a number of people each one of whom has helped me with his own waythroughmyPhD. Icouldn’t havedoneit without you. First of all I’d like to thank Mum, Dad, and the rest of my family for their love and support throughout myfouryears ofstudies awayfrom them. This oneis foryou! A special mention to my supervisors Dr. Abbas Dehghani and Dr. Robert. C. Richardson for their support and concern and for giving me the opportunity to pre- sent my work in a international conferences. It has been an honour studying and workingbyyoursideall thoseyears. ThankyouAbbas andRobert. A special thank you to Dr. David Gow, who is from Smart Centre, NHS Lothian, for theencouragement,patienceand kindsupport. ThankyouDavid. Thanks to the staff in the School of Mechanical Engineering that have helped me through my time there. In particular Mr. David Readman and Mr. Steve Caddick have been a great source of technical support and hoarded parts; thanks for all the advice, help and teasing jokes! You have made my time in the labs fun and worth- while! Page|iv Contents Abstract.......................................................................................................................i Acknowledgements...................................................................................................iii Contents....................................................................................................................iv Listof Abbreviations.............................................................................................viii Listof Figures............................................................................................................x Listof Tables...........................................................................................................xv CHAPTER1Introduction..............................................................................1 1.1 Background...............................................................................................1 1.2 Aim andobjectives....................................................................................3 1.2.1Objectives.........................................................................................3 1.3 Thesis outline............................................................................................5 CHAPTER2LiteratureReview.....................................................................7 2.1 Introduction...............................................................................................7 2.2 ActuationSystem Design..........................................................................9 2.2.1ReviewofActuators.........................................................................9 2.3 sEMGControl Input Signal....................................................................15 2.3.1SurfaceMyoelectrodes...................................................................17 2.3.2Signal ProcessingTechniques........................................................18 2.3.2.1 Dataacquisition...............................................................18 2.3.2.2 FeatureExtractionandSelection....................................19 2.3.2.2.1TimeDomain............................................................19 2.3.2.2.2FrequencyDomain....................................................21 2.3.2.2.3Time-ScaleDomain..................................................23 2.3.3PatternRecognition........................................................................29 2.3.3.1 FuzzyLogic.....................................................................31 2.3.3.2 Artificial Neural Network...............................................32 2.3.3.3 AdaptiveNeuro-FuzzyInferenceSystem........................34 2.4 SummaryandContributionofthis Project..............................................35 CHAPTER3Design of aProstheticFinger.................................................37 3.1 Introduction.............................................................................................37 Page|v 3.2 HandandFingerAnatomy......................................................................37 3.3 FingerDesign..........................................................................................39 3.3.1Dimensions.....................................................................................39 3.3.2Joints andDegrees ofFreedom......................................................41 3.3.3Material Selection..........................................................................41 3.4 ProstheticFingerKinematics..................................................................43 3.4.1ForwardKinematics.......................................................................45 3.4.2InverseKinematics.........................................................................50 3.4.3VerificationofClosedForm FormulaofInverseKinematics........54 3.5 Summary.................................................................................................55 CHAPTER4Hybrid Actuation Mechanism...............................................57 4.1 Introduction.............................................................................................57 4.2 DC Actuator............................................................................................57 4.2.1Force/TorqueoftheMCP Joint andProximal Phalanx.................60 4.3 SMAActuator.........................................................................................63 4.3.1LinearDisplacement ofSMAActuator.........................................63 4.3.2Force/TorqueofSMAActuator.....................................................70 4.3.3Experiment ofResult.....................................................................74 4.4 Summary.................................................................................................82 CHAPTER5Control SystemDesign of Actuation Mechanism................84 5.1 Introduction.............................................................................................84 5.2 DC Actuator............................................................................................84 5.2.1Modelling–System Identification.................................................85 5.2.1.1 AcquiringandPre-processingData.................................86 5.2.1.2 EstimationandValidationofModel...............................88 5.2.1.3 Model TransformationandAnalysis...............................97 5.2.2Control Design –Proportional Derivative...................................100 5.2.3Deployment..................................................................................104 5.3 ShapeMemoryAlloyActuator.............................................................107 5.3.1TimeResponse.............................................................................108 5.3.2Control Design.............................................................................110 5.4 Summary...............................................................................................111 Page|vi CHAPTER6SurfaceElectromyographyand its Signal Processing Techniques....................................................................................................113 6.1 Introduction...........................................................................................113 6.2 Electromyography.................................................................................113 6.3 Myoelectrodes Sensor...........................................................................115 6.4 DataAcquisition....................................................................................116 6.4.1Equipment andProgrammingSetups...........................................116 6.4.2MethodologyforCollectingsEMGSignal..................................117 6.4.3Initial sEMGDataCollection.......................................................124 6.5 FeatureExtractionandSelection..........................................................125 6.6 Result ofOneTypical Signal................................................................130 6.7 Summary...............................................................................................132 CHAPTER7Pattern Recognition..............................................................135 7.1 Introduction...........................................................................................135 7.2 Fundamentals ofNeural Network.........................................................136 7.3 DataAssemblingandArrayManagement............................................140 7.3.1ThreePatterns ofMovement........................................................141 7.3.2FivePatterns ofMovement..........................................................142 7.3.3SevenPatterns ofMovement.......................................................145 7.3.4NinePatterns ofMovement.........................................................147 7.4 MethodologyforDesigningandTrainingNeural Network..................149 7.4.1Network’s Inputs Samples andTarget’s Array............................150 7.4.2NetworkCreation.........................................................................151 7.4.3NetworkSimulationandAccuracyofSimulatedNetwork..........152 7.5 Results andAnalysis ofPatternClassification......................................155 7.6 Summary...............................................................................................157 CHAPTER8Summary and Conclusions..................................................159 8.1 Assessment ofResearchObjectives......................................................159 8.2 Conclusions...........................................................................................161 8.3 FutureWorks.........................................................................................162 Page|vii REFERENCES......................................................................................................164 APPENDICES.......................................................................................................170 APPENDIXADC ActuatorSystem IdentificationModellingandPID Control Design......................................................................................171 APPENDIXBDeployment ProgrammingofDC ActuatorControl System...................................................................................................174 APPENDIXC LabViewEnvironment forsEMGDataAcquisitionin TimeDomain........................................................................................182 APPENDIXDMatLabProgrammingforFeatures Extraction......................183 APPENDIXEMatLabProgrammingforNeural NetworkPattern Recognition...........................................................................................187 APPENDIXFNeural NetworkPatternRecognitionforDifferent Subjects.................................................................................................190 APPENDIXGPublishedWork.....................................................................191 Page|viii List of Abbreviations ANFIS AdaptiveNeuro-FuzzyInferenceSystem ANN Artificial Neural Network AR AutoregressiveCoefficients ARX AutoregressivewithExogenous Terms ARMAX AutoregressiveMovingAveragewithExogenous Terms CWT Continuous Wavelet Transform DIP Distal Interphalangeal DOF DegreeofFreedom DP Distal Phalange DWT DiscreteWavelet Transform EAPs ElectroactivePolymers EMG Electromyograph FFTs Fast FourierTransforms FL FuzzyLogic IMES ImplantableMyoelectricSensor logsig Log-sigmoid MAV MeanAbsoluteValue MCP Metacarpophalangeal MP MiddlePhalange MSE Meansquareerror MVC Maximum VoluntaryContraction Ni-Ti Nickel-Titanium PID Proportional Integral Derivative PIP Proximal Interphalangeal PP Proximal Phalange pureline lineartransferfunction RMS Root MeanSquare sEMG SurfaceElectromyography SMAs ShapeMemoryAlloys SOM Self-organizingmap STFT Shoft TimeFourierTransform Page|ix tansig tan-sigmoid VAR Variance WAMP Wilson Amplitude WL Waveform Length WT Wavelet Transform

Description:
mechanism in the design and development of an intelligent prosthetic hand. This Two novel features are developed in the new prosthetic hand.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.