sensors Article An Efficient Wireless Sensor Network for Industrial Monitoring and Control JuanAponte-Luis1,JuanAntonioGómez-Galán2,* ID,FernandoGómez-Bravo2, ManuelSánchez-Raya2,JavierAlcina-Espigado1andPedroMiguelTeixido-Rovira1 1 OnTechSecurityLLC,C/HispanoAviación,7-9,41300Sevilla,LaRinconada,Spain; [email protected](J.A.-L.);[email protected](J.A.-E.);[email protected](P.M.T.-R.) 2 DepartmentElectronicEngineering,Computers,andAutomatic,UniversityofHuelva, CtraHuelva-LaRábida,s/n,21819Huelva,Spain;[email protected](F.G.-B.); [email protected](M.S.-R.) * Correspondence:[email protected];Tel.:+34-959217650;Fax:+34-959217348 Received:13December2017;Accepted:8January2018;Published:10January2018 Abstract:Thispaperpresentsthedesignofawirelesssensornetworkparticularlydesignedforremote monitoring and control of industrial parameters. The article describes the network components, protocolandsensordeployment,aimedtoaccomplishindustrialconstraintandtoassurereliability andlowpowerconsumption. Aparticularcaseofstudyispresented. Thesystemconsistsofabase station,gassensingnodes,atree-basedroutingschemeforthewirelesssensornodesandareal-time monitoring application that operates from a remote computer and a mobile phone. The system assuresthattheindustrialsafetyqualityandthemeasurementandmonitoringsystemachievesan efficientindustrialmonitoringoperations.Therobustnessofthedevelopedsystemandthesecurityin thecommunicationshavebeenguaranteedbothinhardwareandsoftwarelevel.Thesystemisflexible andcanbeadaptedtodifferentenvironments. Thetestingofthesystemconfirmsthefeasibilityof theproposedimplementationandvalidatesthefunctionalrequirementsofthedevelopeddevices, thenetworkingsolutionandthepowerconsumptionmanagement. Keywords: remoteindustrymonitoring;wirelesssensornetwork;lowpowerconsumption 1. Introduction Wirelesssensornetworks(WSN)haveemergedasoneofthemostpromisingtechnologiesforthe future. Someofthepotentialapplicationdomainsarehealthcare,army,environmentandagriculture, industry,transportationsystemsandsecurity[1–10]. Unlikeothernetworks,WSNaredesignedfor specificapplications,andthus,theymustsatisfyasetofrequirementsthatdiffersfromoneapplication toanother. Therefore,researchersmustaddressavarietyofchallengestofacilitatethewidespread deploymentofWSNtechnologyinreal-worlddomains. Asaresult,greateffortshavebeendevotedto overcometheenergy-savingproblemandreliability[11,12]. Industrialplantsintegratesensorsconnectedtothecontrolstationthroughwireandwireless methodsforcontinuoussensingandmonitoringthestatusofthesystem. Inthiscontext, wireless technologygivesasuitablesupporttotheindustryofferingadvantagesintermsoflowinstallation cost,scalability,flexibility,lackofcabling,intelligent-processingcapability,highmobilityandeaseof deploymentcomparedtoconventionalwiredsolutions. Theseadvantagesarepromisingforindustry, whereaconsiderablegrowthinthenearfutureisexpected[13]. Nevertheless,theuseofWSNsensorsforindustrialapplicationsrequiresaccomplishingasetof hardconstraints. Forinstance,monitoringandcontrolofaspecificprocess,demandsthedevelopment ofparticularnetworkarchitectures,mechanismsandalgorithmsthatguaranteeahighcommunication qualityandreliabilityofthesystem[14,15]. Inaddition,asenvironmentalconditionsmaybehard, Sensors2018,18,182;doi:10.3390/s18010182 www.mdpi.com/journal/sensors Sensors2018,18,182 2of15 industryimplementationsmustensuredatareliabilityatalltimes. Finally,thedesignofanindustrial communicationnetworkmustensuretheavailabilityofthedata,authenticityandconfidentiality[16]. It is not easy for the WSN designer to select the efficient solutions that should be considered inthedesignofapplication-specificWSNarchitectures. Althoughisdifficulttoproposeageneral approach for developing WSNs for industrial applications, this work considers some of the more commonresourceconstraintsofaWSNinthisfieldrelatedto: limitedpowerconsumption,robustness, processingcapacityandstorage. Themaincontributionofthepaperisrelatedtothedevelopmentofanefficientarchitecturein terms of power consumption and reliability, which involves both hardware and software design strategies. Moreover, the deployed WSN is easily scalable up. Authors have experimentally demonstratedtheproposalfeasibilityandtheenergyefficiencyoftheirapproach. The research covers several areas going from physical layer optimization to network layer solutions. IEEE802.15.4standardwaschosenforcommunicationsbecauseinthelastfewyearsithas becomeareferenceforwirelessapplicationswithlowdataratesandhighenergyefficiency[17–23]. Infact,mostoftheWSNtechnologiesareestablishedbyadaptingIEEE802.15.4standardbyusing different frequencies and protocols. This standard, specifically designed for LR-WPAN networks, isalow-complexityprotocolthatofferslowcostandenergyfeatures,aswellashighversatilityfor thedevelopmentofdifferenttopologies. Wehavedevotedeffortstodevelopaspecificstacksince industrialapplicationsrequirefastandtimelyresponsiveness. Thenetworkarchitectureisparticularly designedtoaddresstheseindustrialrequirements. Theproposedsystemcanbeeasilyscaledupequippingvarioussensorsonthedesignedsensor nodeorevenincludingnewsensornodestomeasureotherphysicalmagnitudesorparametersof interest. Thewirelesstransmissionwasusedtointegrateallindependentsensorsignalsthatallowed forcentralizationandreal-timecontrol. Centralmanagementsaveslabor, increasesefficiencyand greatlyreducescostsinindustrialsafety. Aparticularcaseofstudyhasbeenconsideredinordertovalidatetheauthors’theoreticalhypothesis. An industrial WSN for detecting and monitoring different types of gases has been implemented. The article gives details about the design of the modules and highlights the implementation of the theoreticalapproaches. Thepaperisorganizedasfollows:inthenextsectionthecomponentsoftheproposedarchitecture arepresentedandthegeneralwayofworkingisdescribed. Section3isdevotedtoexplainingthe mainfeaturesofthenetbygivingdetailsaboutthecommunicationprotocolandtheroleplayedby thedifferentelementsofthenetwork. Finally,Section4illustratedtheexperimentalvalidationofthe elementsimplementedforthecaseofstudy. Finally,conclusionsaregiveninSection5. 2. SystemDescriptionandOperation AWSNconsistsoftinysensordevicesspatiallydistributedformingalowlevelself-organized network,whichsendthedatagatheredthroughwirelesslinkstosinknodes. Then,thesinknodes processoranalyzethedatalocallyorareconnectedtoothernetworks,realizingreal-timemonitoring andcontrol. Usually,theintrinsiccharacteristicsofthewirelesssensornetworkpresentnewchallenges inhardwaredesign,communicationprotocolsandapplicationdesign. Thisrequiresmodifyinglegacy protocolsforconventionalwirelessnetworksordesigningneweffectivecommunicationprotocols andalgorithms. Figure 1 shows the three different subsystems of the proposed industrial WSN architecture: Thesensordevicesormotes,thebasestationandtheinformationmanagementsystem. Sensors2018,18,182 3of15 Sensors 2018, 18, 182 3 of 15 Figure 1. Architecture of the designed wireless sensor network. Figure1.Architectureofthedesignedwirelesssensornetwork. Despite of being a common structure, each of the elements depicted in this figure requires a Despiteofbeingacommonstructure,eachoftheelementsdepictedinthisfigurerequiresaparticular particular consideration for achieving the efficiency demanded by industrial applications. This considerationforachievingtheefficiencydemandedbyindustrialapplications. Thissectionisdevoted section is devoted to describe the design of these elements in terms of: reliability, power to describe the design of these elements in terms of: reliability, power consumption, data availability, consumption, data availability, authenticity and confidentiality, friendly and easy remote authenticityandconfidentiality,friendlyandeasyremoteconfiguration.Theoreticalapproachesarefirst configuration. Theoretical approaches are first described and later turned into a real development by describedandlaterturnedintoarealdevelopmentbyconsideringtheproposedcaseofstudy:anindustrial considering the proposed case of study: an industrial WSN for monitoring and detecting different WSNformonitoringanddetectingdifferenttypesofgases. types of gases. 2.1. SensorNode 2.1. Sensor Node Several questions have been addressed in the design of the sensor nodes, concerning energy Several questions have been addressed in the design of the sensor nodes, concerning energy efficiency,reliabilityandlatencyreduction. efficiency, reliability and latency reduction. Ontheonehand,sensornodesaredesignedtobuiltaflexiblesolutionandavoidcomplexcabling. On the one hand, sensor nodes are designed to built a flexible solution and avoid complex Moreover,defininganenergyefficientoperationmodeisessentialforthetargetapplication. Forthis cabling. Moreover, defining an energy efficient operation mode is essential for the target application. purpose,sensornodesgatherthedataperiodicallybuttheyalternatebetweenworkingcycles(when For this purpose, sensor nodes gather the data periodically but they alternate between working thenodeisawake)andlowpowerconsumptioncycles(whenthenodeisslept). Thisissueallows cycles (when the node is awake) and low power consumption cycles (when the node is slept). This thesensornodestokeeptheenergyconsumptiontoaminimum,extendingtheirfunctionalityfor issue allows the sensor nodes to keep the energy consumption to a minimum, extending their areasonableperiodoftime. functionality for a reasonable period of time. Thisoperationmodetogetherwithanenergyefficientprotocol(describedindetailinSection3) This operation mode together with an energy efficient protocol (described in detail in Section 3) hasbeenproposedtosaveenergyandguaranteethatthedataisreliablydeliveredtothesinknode. has been proposed to save energy and guarantee that the data is reliably delivered to the sink node. To this aim, sensor nodes are deployed with a cluster-tree topology. Both the employed network To this aim, sensor nodes are deployed with a cluster-tree topology. Both the employed network topology and the protocol allow the designed system to increase its scalability, containing a large topology and the protocol allow the designed system to increase its scalability, containing a large numberofsensornodes. Inthisway,lowcostandsmall-sizedsensornodeshavebeenimplemented. number of sensor nodes. In this way, low cost and small-sized sensor nodes have been implemented. Finally,latencyhasalsobeentakenintoaccountforpracticaloperation. Latencyisanimportantfactor Finally, latency has also been taken into account for practical operation. Latency is an important forthesystemreliabilitysuchasinthecaseofemergencyresponse,andaccuracyofdatareportingin factor for the system reliability such as in the case of emergency response, and accuracy of data caseofhighfrequencyperiodicaldataupdates. reporting in case of high frequency periodical data updates. Alltheseideashavebeenreflectedinthedesignofthesensorimplementedinthecaseofstudy. All these ideas have been reflected in the design of the sensor implemented in the case of study. Figure2showstheboardofthedevelopedsensingnode. Thedesignedhardwareconsistsofananalog Figure 2 shows the board of the developed sensing node. The designed hardware consists of an analog gassensor,adataprocessingmodule(microcontroller),awirelesscommunicationmodule(wireless gas sensor, a data processing module (microcontroller), a wireless communication module (wireless transceiver)andanenergymodule.Thegassensorcomprisesofallcircuitrynecessaryforthedetection transceiver) and an energy module. The gas sensor comprises of all circuitry necessary for the ofbutane,methaneandpropane. Thedetectionsystemiscompletedincludingacarbonmonoxide detection of butane, methane and propane. The detection system is completed including a carbon (CO)sensor. BoththegassensorandtheCOsensorareplacedonthebottomoftheboard. monoxide (CO) sensor. Both the gas sensor and the CO sensor are placed on the bottom of the board. TheanaloggassensorTGS6810fromFigaro(ArlingtonHeights,IL,USA)hasbeenchosen. Thisis The analog gas sensor TGS6810 from Figaro (Arlington Heights, IL, USA) has been chosen. This acompactsensorwhosestability,quickresponseandlinearoutputmakesitsuitablefordetecting is a compact sensor whose stability, quick response and linear output makes it suitable for detecting combustiblegases. Thesignal-conditioningcircuitisbasicallyaWheatstonebridge,whosedifferential combustible gases. The signal-conditioning circuit is basically a Wheatstone bridge, whose outputvoltageisconvertedtoasingle-endedsignalandamplifiedbyanon-invertingamplifierstage. differential output voltage is converted to a single-ended signal and amplified by a non-inverting The high sensitivity of this sensor can detect very small gas leaks in very early stages, avoiding amplifier stage. The high sensitivity of this sensor can detect very small gas leaks in very early accidentsduetoexplosions, firesorinhalations. RegardingtheCOsensor, theTGS5342alsofrom stages, avoiding accidents due to explosions, fires or inhalations. Regarding the CO sensor, the Figaro(ArlingtonHeights,IL,USA)hasbeenused. Thissensorgeneratesasmallcurrent,linearto TGS5342 also from Figaro (Arlington Heights, IL, USA) has been used. This sensor generates a small CO concentration, which is converted into an output voltage by an op-amp/resistor combination. current, linear to CO concentration, which is converted into an output voltage by an op-amp/resistor The output signal of the analog sensors is converted to a binary value using the analog to digital combination. The output signal of the analog sensors is converted to a binary value using the analog converterofthemicrocontroller. to digital converter of the microcontroller. Sensors2018,18,182 4of15 Sensors 2018, 18, 182 4 of 15 Figure 2. Gas sensing node. Figure2.Gassensingnode. 2.2. Base Station 2.2. BaseStation The core of the proposed architecture is the base station which centralizes all system signals. The core of the proposed architecture is the base station which centralizes all system signals. This node is also known as gateway or sink node. It coordinates the network, receives the data from Thisnodeisalsoknownasgatewayorsinknode. Itcoordinatesthenetwork,receivesthedatafrom the sensor nodes, and processes and stores it into the information management system. For this the sensor nodes, and processes and stores it into the information management system. For this purpose, the base station has to include several elements responsible for performing these main purpose,thebasestationhastoincludeseveralelementsresponsibleforperformingthesemaintasks. tasks. First of all, an efficient wireless circuit for implementing communication with the sensor nodes First of all, an efficient wireless circuit for implementing communication with the sensor nodes is is needed. Secondly, a redundant communications system that supports outer communications has needed. Secondly,aredundantcommunicationssystemthatsupportsoutercommunicationshasto to be included. The base station should also provide a simple human interface to allow basic beincluded. Thebasestationshouldalsoprovideasimplehumaninterfacetoallowbasicoperation. operation. Finally, although the base station is usually plugged to a power supply, it is also subject to Finally,althoughthebasestationisusuallypluggedtoapowersupply,itisalsosubjecttoenergy energy constraint and the possibility of being powered by a battery has to be taken into account. constraintandthepossibilityofbeingpoweredbyabatteryhastobetakenintoaccount. In this article a general purpose design for a base station is proposed. It can be applied either for Inthisarticleageneralpurposedesignforabasestationisproposed. Itcanbeappliedeither the considered case of study or for another industrial application. In the following the proposed fortheconsideredcaseofstudyorforanotherindustrialapplication. Inthefollowingtheproposed design is described in detail. designisdescribedindetail. The hardware of the base station is divided into two printed circuit boards. The primary board Thehardwareofthebasestationisdividedintotwoprintedcircuitboards. Theprimaryboardis is the core of the base station, and includes the following elements: a RF (radio frequency) thecoreofthebasestation,andincludesthefollowingelements:aRF(radiofrequency)communication communication circuit compatible with the one used by the sensor nodes, a power supply system circuitcompatiblewiththeoneusedbythesensornodes,apowersupplysystem(internalbattery, (internal battery, battery charger), an outer communication system, control circuits and data batterycharger),anoutercommunicationsystem,controlcircuitsanddataprocessing(MCU).Figure3 processing (MCU). Figure 3 shows details of the hardware implementation of this main board. showsdetailsofthehardwareimplementationofthismainboard. The base station is structured in a multi-processor design with two independent control circuits Thebasestationisstructuredinamulti-processordesignwithtwoindependentcontrolcircuits as shown in Figure 4: One based on the 16-bit PIC24FJ128GA306 microcontroller and another based as shown in Figure 4: One based on the 16-bit PIC24FJ128GA306 microcontroller and another on the 32-bit PIC32MX795F512L microcontroller, both from Microchip (Chandler, AZ, USA). These basedonthe32-bitPIC32MX795F512Lmicrocontroller,bothfromMicrochip(Chandler,AZ,USA). microcontrollers meet all needed specifications, and the main tasks assigned to each are as follows: These microcontrollers meet all needed specifications, and the main tasks assigned to each are as the 16-bit microcontroller handles the control of the capacitive touch keyboard and its Light Emitting follows: the 16-bit microcontroller handles the control of the capacitive touch keyboard and its Diode (LEDs), Serial Peripheral Interface (SPI) communications with the RF 868 MHz circuit for the LightEmittingDiode(LEDs),SerialPeripheralInterface(SPI)communicationswiththeRF868MHz wireless data transmission with the sensor nodes, and communications with the 32-bit circuitforthewirelessdatatransmissionwiththesensornodes,andcommunicationswiththe32-bit microcontroller in order to synchronize with the external world all events occurring in wireless microcontroller in order to synchronize with the external world all events occurring in wireless peripherals attached to the system. The 32-bit microcontroller performs two basic tasks: managing peripheralsattachedtothesystem. The32-bitmicrocontrollerperformstwobasictasks: managing the main firmware, and controlling the outer communication system. These communications can be themainfirmware,andcontrollingtheoutercommunicationsystem. Thesecommunicationscanbe supported by three different technologies (Ethernet, Wi-Fi, and 2G/GPRS modules). By means of supportedbythreedifferenttechnologies(Ethernet,Wi-Fi,and2G/GPRSmodules). Bymeansofthese these mechanisms the base station is able to retransmit the information gathered by the sensor nodes mechanismsthebasestationisabletoretransmittheinformationgatheredbythesensornodestothe to the external world. Thus, the versatility of the base station ensures a feasible communication with externalworld. Thus,theversatilityofthebasestationensuresafeasiblecommunicationwiththe the server and Internet through wired and wireless connections. The communication is further serverandInternetthroughwiredandwirelessconnections. Thecommunicationisfurtherassured assured with the 2G/GPRS module for losses of Ethernet and Wi-Fi connections, making the system more robust and even avoiding sabotages. Sensors2018,18,182 5of15 withthe2G/GPRSmoduleforlossesofEthernetandWi-Ficonnections, makingthesystemmore rSoebnsuosrst 2a0n18d, 1e8v, e1n82 avoidingsabotages. 5 of 15 Sensors 2018, 18, 182 5 of 15 FFFiiiggguuurrreee 3 33... IIImmmaaagggeee ooofff ttthhheee mmmaaaiiinnn bbboooaaarrrddd o oofff t tthhheee b bbaaassseee s sstttaaatttiioioonnn... Figure 4. Block diagram of the firmware structure of the base station. Figure 4. Block diagram of the firmware structure of the base station. Figure4.Blockdiagramofthefirmwarestructureofthebasestation. The short-range radio module exchanges data via wireless at 868 MHz following a specific The short-range radio module exchanges data via wireless at 868 MHz following a specific stackT,h wehshicohr th-raasn gbeeernad dioevmeloodpuelde ecxocnhcailniagteisngd atthaev miaowsti raelpepssroaptr8i6a8teM feHaztufroelslo owf inIEgEaEs p8e0c2i.fi15c.s4t aacnkd, stack, which has been developed conciliating the most appropriate features of IEEE 802.15.4 and wMhiiWchi hfoasr btheeen tadregveetl oappepdliccaotniocinli. aAtindgditthioenmalolyst, aepnpcrryopptriioante afelgaoturirtehsmosf IhEaEvEe 8b0e2e.1n5 .i4mapnledmMeniWteidf otro MiWi for the target application. Additionally, encryption algorithms have been implemented to tihmeptarorgveet tahpe psleiccuartiiotyn .ofA tdhde iRtiFo ncoamllym,eunncircyaptitoionns, aalsg woriiltlh bme sdihsacvuessbeede lnatiemr.p Alenm eelenctterdomtoaigmnpetriocv sehitehled improve the security of the RF communications, as will be discussed later. An electromagnetic shield steoc uavriotiydo infttehrefeRreFnccoem pmroublneimcast iboentsw,eaesnw thilel bReF dciirsccuuists aenddl aatdejra.cAennt ecilreccutriotsm haagsn aelstioc bseheienl dintcoluadveodi.d to avoid interference problems between the RF circuit and adjacent circuits has also been included. interfTerheen craedpiroo mbloemduslbe eitsw beaesnedth oenR tFhec itrrcaunistcaenivdeard MjaRceFn8t9cXirAc ufritosmh aMsiaclrsoocbheipen (Cinhcalunddeledr., AZ, USA), The radio module is based on the transceiver MRF89XA from Microchip (Chandler, AZ, USA), chosTenh edruaed itoo mthoed vueleryi slobwas epdowonert hceontrsaunmscpetiivoenr aMnRd Ff8o9rX bAeifnrgo mpaMrtiiccurolacrhliyp s(uCihtaabnlde lfeorr, AthZe, sUeSnAso)r, chosen due to the very low power consumption and for being particularly suitable for the sensor cnhoodseens. dAu elotowt hceovste rsyollouwtiopno whaesr cboenesnu mchpotsieonn adnedsifgonribnegi nag PpCarBt ictrualacerl yansuteitnanbale, faovrotihdeinsgen tshoer nuosde eosf. nodes. A low cost solution has been chosen designing a PCB trace antenna, avoiding the use of Acolnowvencotisotnsaoll uatnitoennnhaass obre ecnomchmoseernciadle esliegmnienngtsa tPhCatB wtroaucleda andtedn cnoas,ta tvoo tihdei ndgevthiceeu. Fseigoufrceo 5n svheonwtios nthale conventional antennas or commercial elements that would add cost to the device. Figure 5 shows the adnetseingnnaesd oarncteonmnma aenrcdia tlheel escmheenmtse tohfa tthwe RouF lmdoaddudlec.o sttothedevice. Figure5showsthedesigned designed antenna and the scheme of the RF module. antennaandtheschemeoftheRFmodule. Sensors2018,18,182 6of15 Sensors 2018, 18, 182 6 of 15 Sensors 2018, 18, 182 6 of 15 Figure 5. Designed antenna and scheme of the radio frequency (RF) module. Figure5.Designedantennaandschemeoftheradiofrequency(RF)module. Figure 5. Designed antenna and scheme of the radio frequency (RF) module. Simulation software for high performance antennas has been used. Results shown in Figure 6 guaSriaSmnimtueuleal tathitoieon pnsr sooofptfewtwr aoarpreee frfoaortri hohniig.g hh ppeerrffoorrmmaannccee aanntteennnnaass hhaass bbeeeenn uusseedd. .RReesusultlst sshshowown nini nFiFgiugruer e6 6 gugauraarnatneteeet htheep proroppeerro oppeerraatitoionn.. Figure 6. Simulated performance of the antenna. Figure 6. Simulated performance of the antenna. Figure6.Simulatedperformanceoftheantenna. The base station is plugged to a power supply but it can also be supplied by a battery. AddiTtihoen abla csier csutiatrtiyo nh aiss bpeleung ginecdlu tdoe da bpaoswede ro nsu tphpe liyn tbeugtr aitte dc alnin eaalsro c hbaer gseurp bpqli2e4d0 7b0y f rao mba Ttteexrays. AIndstdTriuhtimeonbeaanslt esc isr(tcDautaiiotllrnays i,hs apTslX ub,g egeUneSd Aint)oc lauasdp eoadw bseyarsssteuedmp po nlpy otbhwuee tirin-tptceaagtnrha atmlesdoa nlbianegeseaumrp cephnlaite rdgdeebrvy bicaqe2b. 4a0Ttt7he0irs yf .rcoAomdm dTbieitnixoeandsa l ciIarncpsuptirrtuorymachehna atsslbl oe(wDensa ltilhnasec, l ubTadsXee,d sUbtaaStsiAoe)nd taoosn btaeh essiyimnsttueelmgtar napteeoodwusleilrny- eppaaortwhc hemraeradgn ewarghbeiqmle2 e4tn0ht7e 0 bdfaertvotiemcrey.T eiTsx hacihssa Irncgsoitmnrgub,m inaenenddt s (Daaapvlpolairdso,sa TcchhX a,arUlgloeSw-Ads)i satchsheaa rbsgayess ect eysmctlaetpsio,o ngwr teeoar t-blpyea etshximtmeunaldtnainangge eotmhuese lbnya tptdtoeewrvyei clrieef.ed.T Twhhihsei lcbeoa tmsheeb s itbnaaettidtoenar ypis pi asr boclahec athrog acilnolognw,t iansnutdeh e baawsveoorsikdtaisnt cigoh nparrtogopeb-ederilssyic mfhoaurr lagtanen caeydocduleistsli,oy gnpraeola wptleeyrr ieeodxdtwe onfhd 1iil0ne ghth otheuerb sba, taitfte tareynry ie slliecfceht.ar Tircghaieln pbgao,swaene sdrt aoatuviotoanigd iess oacbhcclaeur grtose. - cdoinsctihnaureg e cywcloersk,Tignhrgee apstreloycpoenexrdtleaynr fydo ribn aogna trahdde dobfita ittohtneera ybl aplisefeer i.soTtdah toieof bn1a 0is nhecosluutardtsei,o sin f aai nsc aaepblealecctitrtoiicvcaeol tnpotouiwncuheer k oweuyotprakagdien ogwcpciturhor spa.es srolycifaotreda n adedleictitorTonhnaeil cspse eacrnoionddd LaoErfyD1 sb0 oahsao rsduh roosw,f intfh aienn bFealiegsecut rrseitc a7at.il oTpnho ewin decelrusoidguentsa ogafe cthoacipsca ubcroitsai.vrde atonudc hth ek einypteagdr awtioitnh ians sthoec ibataesde estleactTitorhonen ihsceascs ao nnbded eaLnrE yDab soc ahasar dlslheoonfwgtenh, eiansb Fatisgheue sretca a7tpi. oaTnchiteiinv dceel ussidegnenss ionafg tc hatipes cabhconitaoirvldoe gatyno dut octhh edk eienteytceptga rdoantwieo intt hoinua ctshhs eo( cboianasltyee d elsfeutcanttrciootinno inchasala sn wbdietLhenE aDa s hcauhsmaslahlneon wgfienn, ginaesrF) ,i tghwue ritecha7 p.tahTcehi teipvdreoe pssieegrnn scionhfgot ihcteies chobnfo oatlrhodeg aymn dtaott ehdreieatilensc ttew gohrnaicethi o tnopueincrhmt hi(teo ntbhlayes e stftaurtainoncnstmiohniasasslib oewne inothfa scaihg anhlaullemsn gfarneo, mafis ntthgheee ru)c,a sepwra’isct hitf iivnthegees re pntorsoi ntphgeert esccehhnonsioocrleo ogofy ft thoteh debe otmeacradtteo (rnciaeolptsop uewrch hpic(aohdn )l,p yehfraumdn ictt otit ohbneea l wtmirtahenragsmheduis.m sFiaoonrn tfiohnfe g sdeirge)sn,iagwlnsi tohfrfo tthmhei spt hbreoo pauresdre,cr th’hso efi cicneagpoefarc thittoei vtmeh eak teesyerbinaosloasrrwd o hifni ctphhuept seb rotmhaaritdt a th(rceeo atprvpaaenirls ampbailseds )iin,o nhthaodef 1stoi6g- bnbiaetl s frmmomeicrrtgohecedou.n Fsteororr’ lstlehfire n wdgeeersreigt ionn tiohtifea tlslhyein su sbsoeordao.r fdAt,f httheereb soctaariprndagc(eictnoivtp epp rkeeerliypmbaoidna)ar,rdhy ai tndepsttuost,sb r eathnmadteo ramgree pd au.vlFasoielrsa btohlceec uidnre rstehidge n d1uo6ef-b ttihoti s bomeaxirtcderr,ontchaolen nctoraoipslaelec arit nwivdee trhkee ei ynsbeitnoiasalirltdyiv uiintsype udwt. asAst fhntaeotrt asetrnretiniargveealynil tac obprlrereeliicnmt.t ihTnehau1ry6s, -t btehistetms d, irrciavrnoedcroos nmCtA rpoPull1les1re6sw6 o ewcrceituhirn rcietaidpa ladlcyuiteui vstoee d . Aesftexentresrosntrarsil n engsoepinseect iapanlrldeyl itmhsueii nstaeabnrlysei ttifevosirtt sy,t hwreaasnsed noaopmt pelpnictuiarltseieolysn csoo cwrcrueerrcrete. dTuhsdeuudse,, tpthoreo edvxritdievirennrgsa lCsnaAtoiPsisf1ae1c6at6on rwdyi tthrhee scusaepltnass ciaittfiitvveiert y wsraeesnpnseoaorttisne gnes ttpihreeecl iytaelscltoys r. rsTeuhcittea. ibTnlehcl uufsos,iro thnthe oedfs ert hivaepe trposluiCccahAt ikPoe1ny1sb6 wo6aewrrdei t ohunsc eathdpe,a cbpiartosivev eisdtsaientnigos nos raisnticserfseapacetsoceirsay tl hlryee ssvuuelirttssaa btalifletietfyro r repeating the tests. The inclusion of the touch keyboard on the base station increases the versatility Sensors2018,18,182 7of15 theseapplicationswereused,providingsatisfactoryresultsafterrepeatingthetests. Theinclusionof Sensors 2018, 18, 182 7 of 15 thetouchkeyboardonthebasestationincreasestheversatilityofthesystem. Althoughthesystem iscontrolledremotely,thecapacitivetouchkeypadalsoallowstheusertomanuallyentercodesto of the system. Although the system is controlled remotely, the capacitive touch keypad also allows enableordisabledifferentpartsofthesystem. the user to manually enter codes to enable or disable different parts of the system. Figure 7. Touch keyboard of the base station. Figure7.Touchkeyboardofthebasestation. 2.3. Information Management System 2.3. InformationManagementSystem Several system status data need to be defined and gathered together with the sensor data. Several system status data need to be defined and gathered together with the sensor data. Moreover, it is important to remotely adjust system configurations and update and upgrade Moreover,itisimportanttoremotelyadjustsystemconfigurationsandupdateandupgradesoftware software programs. In addition, remote monitoring of system status is useful for system programs. In addition, remote monitoring of system status is useful for system development, development, debugging, and maintenance purposes. debugging,andmaintenancepurposes. The information management system includes a web application and mobile applications for TheinformationmanagementsystemincludesawebapplicationandmobileapplicationsforiOS iOS and Android, which allow the control of all system parameters, and monitoring alarms and andAndroid,whichallowthecontrolofallsystemparameters,andmonitoringalarmsandevents. events. The web application allows configuring the system from a remote computer via Internet by ThewebapplicationallowsconfiguringthesystemfromaremotecomputerviaInternetbyauthorized authorized users, accessible through the outer communication system. The mobile application also users,accessiblethroughtheoutercommunicationsystem. Themobileapplicationalsoprovidesalerts provides alerts in real-time. inreal-time. The complete monitoring and control for industry applications involves the measurement of The complete monitoring and control for industry applications involves the measurement of several physical magnitudes to improve the quality of the processes. The designed wireless system is severalphysicalmagnitudestoimprovethequalityoftheprocesses. Thedesignedwirelesssystemis scalable, and thus the number of quantities to be measured is easily expandable. scalable,andthusthenumberofquantitiestobemeasurediseasilyexpandable. 3. Network Management 3. NetworkManagement 33..11.. PPrreelliimmiinnaarryy CCoonnssiiddeerraattiioonnss IInniittiiaallllyy wwee ssttaarrtteedd ffrroomm aa kknnoowwnn ooppeenn ssoouurrccee pprroottooccooll pprrooppoosseedd bbyy tthhee ttrraannsscceeiivveerr’’ss mmaannuuffaaccttuurreerr,, ccaalllleedd MMiiWWii.. TThhiiss iiss aa llooww ccoosstt ssoolluuttiioonn ffoorr aapppplliiccaattiioonnss wwhheerree llooww ppoowweerr ccoonnssuummppttiioonn, , ffeeww ccoommppuuttaattiioonnaall rreessoouurrcceess aanndd llooww ddaattaa rraatteess aarree rreeqquuiirreedd.. IItt iiss bbaasseedd oonn tthhee IIEEEEEE 880022.1.155.4.4 ssttaannddaarrdd, , ssppeecciiffiiccaallllyy ddeessiiggnneedd ffoorr LLRR--WWPPAANN nneettwwoorrkkss, ,wwhhiicchh ooffffeerrss hhiigghh vveerrssaattiilliittyy ffoorr tthhee ddeevveellooppmmeenntt ooff ddiiffffeerreenntt ttooppoollooggiieess. . TThhee pprreelliimmiinnaarryy tetesststsp perefrofromrmededto toM MiWiiWcoi nccolnucdleuddethda tthitawt iats wnoats snuoffit csiuenfftilcyiernotblyu srtoabnudsts taabnlde sftoarbtlhee fotar rtgheet taaprgpelitc aaptipolnic.aStpioenci.fi Scpaellcyif,iictapllrye,s ietn ptrselsaerngtes llaatregnec ileaste,nwchieicsh, wwheirceh awlseorev aarlsiaob vlearainabdlen eavnedr ndeevteerrm dinetiesrtimc,initisetvice,n ist oemveetnim seosmbeltoicmkeesd bplaorctkoefdt hpeahrta rodfw tahree thhaartdnweaerdee dthiamt mneedediaetde aitmtemnteidoniatoef athtteenptrioocne ossf otrheb epcraoucseessMori Wbeicmauaskee sMiniWtein msivakeeuss ienotefnbsuivsey -uwsae iotfc ybculseys.-wDauitt ycyccylcelse. iDsuotnye coyfctlhe eism oonset ocfo mthme omnolystu csoemdmapopnrloya uchseeds taoprperdouacceheths etoe nreerdguycec otnhseu emnpertigoyn cdounrsiunmgpwtiaoitni ndgutriimnge .wFauirttihnegr mtimoree., Fituirsthoenremoofrteh,e imt iasj oornseo uorfc etsheo fmenaejorrg ysowuarsctees. Tohf eerneeforgrey, fworasthtee. fiTrhmewreaforereo, ffRoFr cthome mfirumnwicaartieo nosf, RwFe cpormefmerruendictaotidoenvse, lwope aprsepfeecrirfiecd sttoa cdke.vTehloepm aa sinpefceiafticu rsetascokf. tThheed mevaeilno pfeeadtusrtaecsk oaf rteheth deefvoellloowpeidng s:tack are the following: SPI controller with an interrupt mechanism to minimize latency and the busy-wait cycle of the microcontroller Sensors2018,18,182 8of15 • SPI controller with an interrupt mechanism to minimize latency and the busy-wait cycle of themicrocontroller • DriverfortheMicrochipMRF89XAtransceiver. Thecontrollerisreadytoworkinbackground, soitdoesnotusebusy-waitcycles,andthereforethereisnolatency • Amediumaccess(MAC)layer,whichisresponsibleforthecommunicationbetweennodesby routingthroughauniquefixedaddress,readfromtheElectricallyErasableProgrammableRead OnlyMemory(EEPROM).Thislayerisalsodesignedtominimizethebusy-waitcyclesandfor mostoftheprocessisdoneinbackground,reducinglatencyasmuchaspossible. Forthedesign ofthislayeraspectsoftheIEEE802.15.4,suchastimeoutsorframeformatswereconsidered • Alogicallinklayer(LLC).Thislayerhandlesthelogicaladdressingofthenodes,theallocation of roles within the network (PAN coordinator, coordinator or end device), assignment of the logicaladdress(whichisnotfixed),routemanagement,networkdiscovery,trafficcontroland management of consumption modes. The design of this layer is also designed to minimize busy-waittimesandlatency • AES128encryptionlayeristheresponsibleforencryptingthemessagesthatwillbesenttothe otherdevices. Thislayerimprovesthesystemsafety • Presentationlayer.Thislayer(abovetheLLClayer)performsthefunctionsofaninterfacebetween thestackandthenode. Itisresponsibleofconfiguringthestack,andofcoordinatingitsoperation • Driver for EEPROM. It is responsible of EEPROM access without interfering with the radio module. Thispreventsahighcouplingbetweenthem,sincebothmayoperateasynchronously, sharingthesameSPIbus. 3.2. ProtocolDescription The designed stack was performed in layers so that they can be used independently and disengagingthedifferentlevelsoffunctionality,allowinganenhancedcode,portability,adaptationto newhardwareandbetterdebuggingandtesting. ThesameaddressingschemeproposedbyMiWi andsupportedforclustertreenetworktopologies(providedbytheLLClayer)havebeenusedinthe newapproach. Themainaimofthedesignistominimizethelatencyandtheprocessorusagealmostwithout busy-waitcycles. Thus,theentiredesignisbasedontheuseofinterruptionsbytheSPIcontroller. Allfunctionsareimplementedasstatemachinesinwhicheachstateistriggeredbyaninterruption whenthepreviousoperationends. Thecommunicationofasynchronousevents,suchasthereceptionofnewmessagesornetwork outageisperformedthroughasetofcallbacksaddedtotheAPIsofeachlayer. Thisstructure(although thedevelopmenthasbeensomewhatmorecomplexthaninthecaseofstacksasinMiWi)hasallowed toreducethemaximumprocessorusage,andthestackscarcelyinfluencestheothercomponentsofthe nodes. ThepowerconsumptionisalsoreducedbecausetheCPUisfreealongerperiodoftime. MiWi,similartothespecificationsdefinedbyIEEE802.15.4,supportsthreenetworkframeworks: Star, Cluster Tree and Mesh; and defines two types of devices: full-function devices (FFD) and reduced-functiondevices(RFD)asshowninTable1. TherolesofthenodescanbedividedintoPAN Coordinator,CoordinatorandEndDeviceasshowninTable2.Sensornodescouldactasafullfunction device(FFD)orreducefunctiondevice(RFD).InFFD,thenodesneversleep,astheyneedtorelaythe informationfromtheRFDtothesinknode,whileaRFDwillonlywakeafteracertainperiodoftime to: gatherthesensordata,forwardittoaFFDnodeandgotothesleepmode. Table1.ClassofdevicesbymeansofIEEE802.15.4. DeviceClass OfferedServices PowerPath LowPowerConfiguration FullFunctionDevice(FFD) All Mains AlwaysON ReducedFunctionDevice(RFD) Limited Batteries AlwaysinSLEEP Sensors2018,18,182 9of15 Table2.Devicesrole(IEEE802.15.4). DeviceRole ClassofDevice(IEEE) FunctionintheNetwork Sensors 2018, 18, 182 9 of 15 Onlyonebynetwork.Createnetwork,assignaddresses, PANCoordinator FFD Table 2. Devices role (IEEE 802.1a5n.4d).h oldtheconnectionstable Optional.Makebiggertherangeofthenetworkandmake Class of CDoeovridcein Ratoolre FFD possiFbulentcotiaodnd inm tohree Ndeevtwicoerskt othenetwork.Controland Device (IEEE) monitoringfunctions PAN Only one by network. Create network, assign addresses, and hold the EndDevice FFD FFDoRFD Controlandmonitoringfunctions Coordinator connections table Optional. Make bigger the range of the network and make possible to add Coordinator FFD more devices to the network. Control and monitoring functions Thesensornodesmustuselowconsumptionoperatingmodesinordertoachievegoodenergy End Device FFD o RFD Control and monitoring functions efficiency.Forthispurpose,acluster-treenetworkhasbeendeployedsothatthesensornodes(actingas EndDevices)caTnheb seensseotra nsordeeds umcuesdt -ufsuen locwtio cnondsuemvipcteiosn( RopFeDra)twingit mhothdeesa ibn iolirtdyert otoe anctheiervien gtohoeds elneeerpgiyn gmode inwhichthefeficcioenncsyu. mFoprt itohnis cpaunrpboesec, oan csliudsteerre-tdrene engeltiwgoibrkl eh.aFs igbeuerne d8epshlooyweds stoh ethtaot pthoel osgenysoorf naocdleuss ter-tree (acting as End Devices) can be set as reduced-function devices (RFD) with the ability to enter in the network. APANCoordinatornodeisresponsibleformanagingthenetwork. ThisPANCoordinator sleeping mode in which the consumption can be considered negligible. Figure 8 shows the topology assignstheaddressestotheENDDevicesandtotheotherCoordinators. Acoordinatornodealso of a cluster-tree network. A PAN Coordinator node is responsible for managing the network. This assignsadPdAreNs sCeosotrodinthateorE aNssDignDs etvheic aedndroedsseess ltooc tahtee dENinDs iDdeeviictess tarnadn stmo tihses iootnherra Cnogoer.diInfaatonrse. wA nodeis switchedocno,oirtdisntaatrotrs noondet haelsoa wasasikgensm aodddreesasnesd tota tkhee sEcNoDn tDaecvtiwce itnhodtehse loFcFaDtedn iondsiedei nitssi dtreanistmstisrsaionns mission range (eithreanrgae. CIf oa onredwi nnoadtoe ris oswritthcheedP oann, iCt sotaorrtsd oinn athteo arw).aOken mcoedteh aendF tFaDkesn coondteacat swsiitgh nthse tFhFeD andodder ess, the inside its transmission range (either a Coordinator or the Pan Coordinator). Once the FFD node END Device starts its cycle switching from awake to sleep mode. This mechanism facilitates the assigns the address, the END Device starts its cycle switching from awake to sleep mode. This systemscalability. mechanism facilitates the system scalability. Figure 8. Cluster-tree network topology. Figure8.Cluster-treenetworktopology. The medium access protocol that has been chosen corresponds to the IEEE 802.15.4 Themsepdeciiufimcatiaocnc. eTshsep dreostiognceodl tlahyaetr hisa slobcaeteedn acbhoovsee tnhec oMrAreCs plaoynerd santdo mthuestI EspEeEcif8y0 t2h.e1 5fo.4lloswpiencgi fication. mechanisms: (1) Assigning addresses to new nodes to be included in the network; (2) Determining The designed layer is located above the MAC layer and must specify the following mechanisms: the necessary elements to create a network topology based on a Cluster Tree topology; (3) Message (1)Assigningaddressestonewnodestobeincludedinthenetwork;(2)Determiningthenecessary routing inside the network, if several jumps are required to reach the destination; (4) Finding out elementstowhcerne aat enoadne elotsweso trhke tcoopnnoelcotgioyn bwaitshe ditso cnooardCinlautsotre; r(5T) rSeeecutroitpy ocloongfiygu;r(a3t)ioMn; e(s6s) aCgoenfrigouurtiningg inside thenetworpka,raifmseetveresr faolrj uenmerpgsy aerffeicrieenqcuyi, rseudcht oasr etaracnhsmthisesidone sptionwaetri,o sne;n(s4it)ivFitiyn danind gsloeeupt swtahteesn oaf tnhoe deloses theconnecttriaonnscweivitehr; i(t7s) Pcroeovredntiinnagt tohre; l(o5s)s oSfe mcuesrsitaygecso envefing iuf rthaet itoarng;e(t6 n)oCdeo ins fiing sulereipn gmpodaer.a metersforenergy Security is critical when designing a wireless communication system. Intrusions may result in efficiency,suchastransmissionpower,sensitivityandsleepstatesofthetransceiver;(7)Preventingthe harmful or even disastrous situations in industrial plants. The designed network includes security lossofmessagesevenifthetargetnodeisinsleepmode. mechanisms and message encryption to maintain data integrity and prevent interception of the Securtirtaynissmcitrtietdi cdaaltaw bhetewneedne tshieg nnoidnegs oaf wtheir neeletwssorcko. mmunicationsystem. Intrusionsmayresultin harmfuloreveRnegdaridsainsgt rtoheu fsloswit ucoanttiroonl, sani nuni-nsldouttesdtr CiaSlMpAla/CnAts m. eTchhaendisems iwgintheodutn beetawcoonrs kis iunsceldu wdheesns ecurity a node wants access to the medium for message transmission, by means defined in IEEE 802.15.4. mechanisms and message encryption to maintain data integrity and prevent interception of the transmitteddatabetweenthenodesofthenetwork. 3.3. Energy Conservation and Data Reliably Deliberation Regardingtheflowcontrol,anun-slottedCSMA/CAmechanismwithoutbeaconsisusedwhen The energy optimization can be made at different levels. As sensor nodes require efficient anodewantsaccesstothemediumformessagetransmission,bymeansdefinedinIEEE802.15.4. energy, optimized hardware for low power operation requires selectable power states (awake or sleep). As in sleep mode the transceiver is disabled, it is necessary to establish some sort of protocol 3.3. EnergytoC aovnosiedr tvhaet iloonss aonf dmeDssaatgaeRs. eliablyDeliberation Theen ergyoptimizationcanbemadeatdifferentlevels. Assensornodesrequireefficientenergy, optimizedhardwareforlowpoweroperationrequiresselectablepowerstates(awakeorsleep). Asin sleepmodethetransceiverisdisabled,itisnecessarytoestablishsomesortofprotocoltoavoidthe lossofmessages. Sensors2018,18,182 10of15 As discussed above, only END Devices can enter sleep mode. The mechanism that prevents the loss of messages when END Devices are in sleep mode consists in making Coordinators store messagesaddressedtotheirENDDevices. Onceanodeisawakeitmustexplicitlyrequestdatatothe CoordinatorsusingDataRequestcommandsdefinedbytheIEEE802.15.4standard. Thus,wewillalso haveaflowcontrolforthecasethatanENDDevicetakestoolongtoprocessamessagebeforeitcan receivethefollowing. Themechanismofenergymanagement,whichinprincipleonlymakessensefor thecaseofanENDDevice,allowscontrollingthewaythattheyaskdatatotheCoordinators. Obviously,thesinknoderequireshighprocessingpowertocoordinatethewholenetworkactivity, thus,itrequiresthehighestenergyconsumptionamongstthedevices. Adetailedpowerbudgetanalysisofthetransceiverwasnecessarytodeterminethecapacityof thesystem. Thepowerconsumptionisdeterminedbymeasuringthecurrentdrawandthetimespent ineachofitsoperatingmodes. Thetestswerecarriedoutforfourfunctionalstates: Datatransmission, acquisition, listening and sleep mode, for a transmission power of 13 dBm. The measured power consumptionwasequalto12.8mAforthetransmissionstate,6.52mAforacquisition,2.99mAfor listening and 17 µA for sleep state. The mean elapsed time used in receiving and answering the pendingmessages,measuredbetweentheawakeningofthenodeandthereturntosleepmode,was 140µs(wakeuptime). Themeancurrentconsumptionforthetransceiverwaslimitedto150µAover acertainperiodoftime. Thus,thefollowingexpressionmustbemet: F ·I +F ·I ≤ I (1) tw w ts s max whereF isthefractionoftimethatthetransceiveristurnedon,andI isthecurrentconsumption tw w ofthetransceiverinthatstate;whilstF isthefractionoftimethatthetransceiverisinsleepmode, ts andI isthecurrentconsumptioninthissamestate. AsF =(1 F ), theaboveexpressioncanbe s ts tw rewritten,yielding, I −I F ≤ max s (2) tw I −I w s Substitutingthemeasuredcurrentvalues,F ≤(150µA−17µA)/(12.8mA−17µA)∼=0.0104. tw Consideringthepowerconsumptionperhour,thetimethatthetransceivercanremaininactivemode isT =0.0104×3600s=37.45s. Thus,thetransceiverallowsaccomplishingaveryhighnumberof w requestsperhour(37.45s/140µs=2.67×105). Therefore,atmaximumpower,theconsumptionof thetransceiverallowsalargenumberofrequeststobemadewithoutbreakingthetimerequirements. Oncethehardwarewasvalidatedandcorrectoperabilitywasassured,thenextstepwastoreview thesoftwareincorporatinglow-consumptionmodesinallthemotes. Figure9showsthefinalimplementationofthebasestationandthegassensor,andthepacking designedtoprotectthem. Thefinaldimensionsofthesensorpackingare70mmindiameterwith aheightof30mm. Forthebasestationtheyare140mmindiameterand35mminheight. Sensors 2018, 18, 182 11 of 15 Figure 9. Image of the base station and gas sensor, and packing design. Figure9.Imageofthebasestationandgassensor,andpackingdesign. 4. Experimental Validation: Monitoring and Control Application Considering the case of study, web and mobile applications that implement a graphical user interface have been developed. By means of this software, real time monitoring of physical magnitudes and battery level of all active nodes can be done. Furthermore, all information measured by the nodes can be preserved for further processing. This information allows the user to act on the system at any time. The web and the mobile applications allow the user to configure all devices of the wireless system, as well as monitoring and receiving alarm warnings. Figure 10 shows the main views of the remote monitoring and control application, and the main features are as follows: 1. Registration and access to the control panel. Users may register through the web portal, which includes their user data and credentials. Once inside the application, the different system devices can be configured and monitored 2. The battery voltage level is closely monitored as a part of the remote system status monitoring service. Near-real-time monitoring of such a system status data is important in determining battery efficiency and early detection of severe battery degradation to prevent system failure and the loss of data 3. Methods of notification about alarms and events provided by the system (Short Message Service (SMS), Email and mobile notifications) can be changed as well as selecting which user should receive such notifications 4. The configuration of the base station and the peripherals that comprise the system allows the user to activate them, disable them, or make changes in the configuration of each device, such as changing detection thresholds, detection periods, etc. 5. Event monitoring. The various events generated in the system can be filtered and listed. These events refer to changes in the configuration of devices and accesses to the system 6. Alarm monitoring. The various alarms generated in the system can be filtered and listed
Description: