Download PaveCool software: http://www.dot.state.mn.us/app/pavecool l ancoi intthracotepneTeegRmauPcoD 1. tropeR.oN 2. .3 s’tneipiceR noisseccA.oN MN/RC - 1998- 18 .4 eltiT dnaeltitbuS .5 tropeRetaD NA TLAHPSA GNIVAP LOOT ROFESREVDA June 1998 SNOITIDNOC 6. .7)s(rohtuA .8 gnimrofreP noitazinagrO tropeR.oN ecurB .AmuobdahC l e.hAcaR erbmoSeD di v.aED bmocweN semaJ .AamouL nah g.uRaV relloV divaD .HmmiT .9 gnimrofreP noitazinagrO emaN dnasserddA .01 kroW/ksaT/tcejorP tinU.oN ytisrevinU foatosenniM tnemtrapeD fo liviCgnireenignE .11 tcartnoC )C( ro tnarG )G(.oN 005 yrubslliP ,evirD.E.S ,silopaenniM atosenniM6110-55455 (C) 72632 TOC # 165 .21 gnirosnopS noitazinagrO emaN dnasserddA .31 epyT fo tropeR dna doirePderevoC atosenniM tnemtrapeD fonoitatropsnarT laniF tropeR - 1995 to 1998 593 nhoJ dnalerI draveluoB liaM potS033 .41 gnirosnopS ycnegAedoC .tS ,luaP atosenniM55155 .51 yratnemelppuSsetoN .61 tcartsbA :timiL( 002)sdrow rooP noitcapmoc nac dael ot yl rnaoeitaroireted fo na tlahps a.tnemevap tI netfo sneppah nehw gnivapsrucco gnirud esrevda rehta e.wsnoitidnoc ,teY ni ,atosenniM gnivap tsum netfo rucco rednu esrevd.asnoitidnoc A wen loot won setalumis eht gnilooc fo na tlahpsa tam dniheb eht revap rednu a yteirav floatnemnorivne .snoitidnoc ehT ,erawtfos looCevaP noisreV ,0.2 sreffo sresu sthgisni otni woh esrevda etami lscnoitidnoclliw tceffa rieht ytiliba ot ecudorp a ,elbaru dytilauq daor .ecafrus sresU tupni eht epyt fonitsixe g ,ecafrus epytfo tlahpsa ,xim dna rehta e.wsnoitidnoc ehT tuptuo swohs a gnilooc evruc htiw dednem mnoocietrcapm ogcnitratsdna gnippot s.semit dleiF stset mrifnoc eht eulav fo siht margorp sa na dia ot dloc rehtae w.gnivap AswodniW ,margorp looCevaP 0.2 snur no potpal sretupmoc swodniW( 95,98, ro TN.)deriuqer sihT troper stnemucod eht yduts fo lamre hsteitreporp dna ytilibitcapmoc fo xim-toh ,tlahpsa detaleryrotarobal stset no eht lamreht diffusivity dna lamreht ytivitcudnoc fo xim-toh tlahpsa ta lacipyt noitcap m,oscerutarepmeta erut a,rweetiivler dna gni t.ssettluser tI osl asedulcni a ypoc fo eht looCevaP noisreV 0.2.erawtfos .71 tnemucoDsrotpircseD/sisylanA .81 ytilibaliavAtnemetatS tlahpsagnivap dloc rehtaewnoitcurtsnoc oN .snoitcirtser tnemucoD elbaliava:morf suonimutibgnivap tlahpsanoitcapmoc lanoitaN lacinhceT noitamrofnI,secivreS ,dleifgnirpS ainigriV 22 611 .91 ytiruceS ssalC siht()troper .02 ytiruceS ssalC siht()egap .12 .oN fosegaP .22ecirP deifissalcnU deifissalcnU 145 AN ASPHALT PAVING TOOL FOR ADVERSE CONDITIONS Final Report Prepared by: Bruce A. Chadbourn David E. Newcomb Vaughan R. Voller Rachel A. De Sombre James A. Luoma David H. Timm University of Minnesota Department of Civil Engineering 500 Pillsbury Dr. SE Minneapolis, MN 55455-0116 June 1998 Prepared for Minnesota Department of Transportation This report represents the results of research conducted by the authors and does not necessarily represent the views or policy of the Minnesota Department of Transportation. TABLE OF CONTENTS CHAPTER 1 INTRODUCTION..................................................................................................1 Background.............................................................................................................1 Objectives...............................................................................................................2 Scope.......................................................................................................................2 CHAPTER 2 LITERATURE REVIEW.......................................................................................5 Compaction of Hot-Mix Asphalt Pavement...........................................................5 Mechanics of Compaction................................................................................5 Compaction of Asphalt Mixtures......................................................................6 Workability of Hot-Mix Asphalt......................................................................8 Aggregate Effects..............................................................................................8 The Effect of Binder Viscosity.........................................................................8 Temperature Effects..........................................................................................9 Filler Effects....................................................................................................10 Control of Hot-Mix Asphalt Compactibility...................................................10 Density and Thickness Changes During Compaction....................................12 Thermal Properties of Pavement Materials...........................................................13 Conduction......................................................................................................13 Convection......................................................................................................16 Radiation.........................................................................................................16 Laboratory Mixture Design and Compaction Methods........................................18 Mixture Design Methods................................................................................18 Methods Used to Define Workability and Compactibility.............................19 Superpave Compaction Specifications...........................................................22 Computational Models..........................................................................................22 Laboratory Tests for Determining Asphalt Pavement Thermal Properties..........25 Thermal Conductivity.....................................................................................25 Specific Heat...................................................................................................26 Thermal Diffusivity........................................................................................26 CHAPTER 3 MODELING OF HEAT TRANSFER DURING ASPHALT PAVING..............27 Introduction...........................................................................................................27 The Paving Process...............................................................................................27 The Model.............................................................................................................28 Assumptions....................................................................................................28 Governing Equations......................................................................................30 Numerical Solution.........................................................................................31 The Deforming Grid.......................................................................................32 Validation........................................................................................................33 The Effects Of Compaction..................................................................................34 Conclusions...........................................................................................................36 CHAPTER 4 THERMAL PROPERTIES..................................................................................37 Introduction...........................................................................................................37 Methodology.........................................................................................................38 Overview.........................................................................................................38 Sensitivity Analysis Of Pavement Thermal Properties...................................38 Pavement Cooling Model.........................................................................39 Results.......................................................................................................40 Conclusions...............................................................................................40 Determination of Appropriate Thermal Property Testing Procedures............40 Mix Design......................................................................................................41 Compaction of Slab Specimens................................................................42 Compaction of Cylindrical Specimens.....................................................43 Asphalt Pavement Thermal Property Measurements......................................44 Slab Cooling Method for Thermal Diffusivity of Asphalt Concrete........44 Thermal Probe Method for Thermal Conductivity of Asphalt Concrete..48 Evaluation of Compaction Processes..............................................................49 Results of Thermal Testing...................................................................................50 Density Analysis.............................................................................................50 Thermal Diffusivity........................................................................................51 Thermal Conductivity.....................................................................................52 Effect on Asphalt Pavement Cooling Rates....................................................52 Conclusions...........................................................................................................54 Compaction.....................................................................................................54 Thermal Diffusivity........................................................................................55 Thermal Conductivity.....................................................................................56 Effect on Asphalt Pavement Cooling Rates....................................................57 CHAPTER 5 COMPACTION PROPERTIES...........................................................................59 Introduction...........................................................................................................59 Summary of Mixture Types..................................................................................59 Laboratory Mixes............................................................................................60 Field Mixture Properties.................................................................................61 Field Data and Sampling.......................................................................................61 Laboratory Compaction........................................................................................64 Compaction Procedure....................................................................................65 Data Analysis..................................................................................................66 Results...................................................................................................................69 Shear Stress.....................................................................................................69 Laboratory Mixtures.................................................................................69 Field Mixtures...........................................................................................71 Power..............................................................................................................74 Laboratory Mixtures.................................................................................74 Field Mixtures...........................................................................................75 Optimal Compaction Temperature.................................................................76 CHAPTER 6 ASPHALT PAVEMENT COOLING TOOL.......................................................79 Description............................................................................................................79 Thermal Properties................................................................................................80 Field Verification..................................................................................................82 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS...............................................83 Conclusions...........................................................................................................83 Recommendations.................................................................................................84 REFERENCES.............................................................................................................................85 APPENDIX A PAVEMENT COOLING MODELS APPENDIX B MATERIAL PROPERTIES APPENDIX C THERMAL TESTING PROCEDURES APPENDIX D ENVIRONMENTAL MODELS APPENDIX E LABORATORY THERMAL DATA APPENDIX F FIELD VERIFICATION LIST OF TABLES Table 2.1 Vibratory Compaction Densities.................................................................................12 Table 2.2 Conventional Compaction Densities...........................................................................12 Table 2.3 Estimated Compression Depth.....................................................................................13 Table 2.4 Typical Lay-Down and Compacted Lift Thicknesses.................................................13 Table 2.5 Reported Thermal Properties for Asphalt Concrete....................................................15 Table 4.1 Asphalt Concrete Specimen Air Void Statistics..........................................................43 Table 5.1 Laboratory Mix Properties...........................................................................................60 Table 5.2 Project Names and Dates.............................................................................................62 Table 6.1 Calculated Thermal Conductivity of Granular Materials............................................81 Table 6.2 Calculated Specific Heat of Granular Materials..........................................................81 LIST OF FIGURES Figure 2.1 Mohr's Circle................................................................................................................6 Figure 2.2 Compaction Process.....................................................................................................7 Figure 2.3 Influence of Compaction Temperature on Air Voids.................................................10 Figure 2.4 Compaction Factor C as a Function of the Apparent Volume of Filler....................11 F Figure 2.5 Two-Body Radiation Model.......................................................................................17 Figure 2.6 Finite Difference Model.............................................................................................23 Figure 3.1 Solution Domain for Asphalt Cooling........................................................................29 Figure 3.2 Temperature History vs. time.....................................................................................34 Figure 3.3 Sensitivity of Solution to Time and Space Steps........................................................35 Figure 3.4 Normalized Heat Content of Various Lifts vs. Compaction Time.............................36 Figure 4.1 Simulated Pavement Cooling Times From 135 to 80 °C...........................................39 Figure 4.2 Aggregate Gradations Used in Thermal Testing........................................................41 Figure 4.3 Schematic for Thermal Diffusivity by the Slab Cooling Method..............................45 Figure 4.4 Selecting Segments That Approximate a Linear Relationship...................................46 Figure 4.5 Comparison of 6-Sensor and 4-Sensor Methods........................................................46 Figure 4.6 Curves and Equations Used to Calculate Thermal Diffusivity..................................47 Figure 4.7 Thermal Probe Components.......................................................................................49 Figure 4.8 Equations Used to Calculate Thermal Conductivity..................................................50 Figure 4.9 Thermal Diffusivity vs. Temperature..........................................................................51 Figure 4.10 Thermal Diffusivity vs. Density................................................................................52 Figure 4.11 Thermal Conductivity vs. Temperature....................................................................53 Figure 4.12 Thermal Conductivity vs. Density............................................................................53 Figure 4.13 Cooling Rate vs. Thermal Diffusivity......................................................................54 Figure 4.14 Cooling Rate vs. Thermal Conductivity...................................................................54 Figure 5.1 Gradations Used in Compaction Testing....................................................................60 Figure 5.2 Probe Position in Asphalt Mat....................................................................................63 Figure 5.3 Temperature Probe Configuration..............................................................................63 Figure 5.4 Mold Configuration....................................................................................................64 Figure 5.5 Shear Movement in Sample During Compaction......................................................65 Figure 5.6 Typical Representation of Shear Stress vs. Number of Cycles..................................66 Figure 5.7 Parameters for Calculation of Shear Stress................................................................67 Figure 5.8 Parameters for Calculation of Power..........................................................................68 Figure 5.9 Percent of Maximum Density vs. Number of Cycles for PG 52-34 Lab Mixtures....70 Figure 5.10 Shear Stress vs. Number of Cycles for PG52-34 Laboratory Mixtures...................70 Figure 5.11 Shear Stress at N vs. Temperature for Laboratory Mixtures..............................71 initial Figure 5.12 Shear Stress at N initial vs. Temperature for 1996 Dense-Graded Projects.............72 Figure 5.13 Shear Stress at N vs. Temperature for 1996 Superpave Projects........................73 initial Figure 5.14 Shear Stress at N vs. Temperature for 1997 Projects..........................................74 initial Figure 5.15 Power at N vs. Temperature for Laboratory Mixtures......................................75 design Figure 5.16 Power at N vs. Temperature in 1996 Field Mixtures........................................75 design Figure 5.17 Power at N vs. Temperature in 1997 Field Mixtures........................................76 design Figure 5.18 Optimum Compaction Temperatures Based on Shear Stress Curves......................77 Figure 6.1 PaveCool 2.0 Input Screen.........................................................................................79 Figure 6.2 Temperature and Density Data for Highway 52, Rosemount, MN.............................82 EXECUTIVE SUMMARY The problems associated with asphalt paving during cold weather conditions are well known and the practice is avoided when possible. However, paving during adverse weather conditions is often necessary, especially in northern regions. In order to minimize the uncertainty associated with cold weather paving, a study was undertaken to evaluate the thermal properties and compactibility of hot-mix asphalt. Laboratory tests were performed to determine the thermal diffusivity and thermal conductivity of hot-mix asphalt at typical compaction temperatures. A gyratory compactor capable of measuring shear stress in the sample during compaction was used to analyze the compaction characteristics of various mixtures. A computer program was developed to simulate the cooling of an asphalt mat behind the paver under a variety of environmental conditions. An extensive literature review was conducted to determine the thermal properties of various paving materials and identify appropriate thermal testing procedures for hot-mix asphalt. Methods of estimating the contribution of solar energy and wind to the pavement cooling problem were located. Thermal diffusivity and thermal conductivity tests were adapted to suit the needs of this study. The results of compaction studies provided recommended starting compaction temperatures based on binder grade. This information was incorporated into a Windows program that can be run on laptop computers in the field. Inputs include the type of existing surface, type of asphalt mix, and various environmental conditions that are easily measured or obtained from local weather reports. The output is a graphical display showing a cooling curve with recommended compaction starting and stopping times. The field verification portion of this study consisted of temperature measurements taken from a variety of paving projects over a period of three years. The results have confirmed the value of this program as an aid to cold weather paving. CHAPTER 1 INTRODUCTION BACKGROUND The quality of asphalt concrete pavement layers constructed during the mid to late fall of the year is of great concern in northern tier states. As ambient temperatures steadily decrease, the uncertainties surrounding the performance of such structures increase. This is because time constraints on the mixing, transport, laydown and compaction of the asphalt mixture become more critical. Any condition leading to a cooling of the material below the proper compaction temperature prior to the completion of rolling may result in an under-densified pavement layer. Such material may exhibit: 1. Increased susceptibility to fatigue and thermal cracking due low tensile strength 2. Rutting due to consolidation 3. Raveling on the pavement surface 4. Sensitivity to moisture In an effort to avoid these types of distress from occurring prematurely, most northern agencies have placed limitations on asphalt paving when ambient temperatures are not favorable for achieving the desired level of compaction. There are numerous reasons for asphalt paving to take place under less-than-desirable conditions. The letting and awarding of construction contracts may have been delayed for administrative and fiscal purposes, or construction may have been delayed due to inclement weather, scheduling or contract problems. The owner of the pavement facility may not be willing to wait for the next construction season to place the asphalt concrete layers in order to have a finished surface for winter use, or so that the pavement will withstand the next thaw weakening period. Regardless of the reason, agencies and contractors are frequently faced with this problem and the results of having an under-compacted asphalt pavement in service can be cost-prohibitive. For agencies, the consequences of premature pavement distress include increased maintenance costs and incurring rehabilitation costs before planned. Contractors face the prospect of payment 1
Description: