ebook img

An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data PDF

0.57 MB·English
by  B. Lott
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data

Astronomy&Astrophysicsmanuscriptno.adaptive˙binning˙one (cid:13)c ESO2012 January24,2012 An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data B.Lott1,2,L.Escande1,2,S.Larsson3,4,5,andJ.Ballet6 1 Univ.Bordeaux,CENBG,UMR5797,F-33170Gradignan,France 2 CNRS,IN2P3,CENBG,UMR5797,F-33170Gradignan,France 2 3 DepartmentofPhysics,StockholmUniversity,AlbaNova,SE-10691Stockholm,Sweden 1 4 TheOskarKleinCentreforCosmoparticlePhysics,AlbaNova,SE-10691Stockholm,Sweden 0 5 DepartmentofAstronomy,StockholmUniversity,SE-10691Stockholm,Sweden 2 6 LaboratoireAIM,CEA-IRFU/CNRS/Universite´ParisDiderot,Serviced’Astrophysique,CEASaclay,91191GifsurYvette,France n a Preprintonlineversion:January24,2012 J 3 ABSTRACT 2 Aims.Wepresentamethodenablingthecreationofconstant-uncertainty/constant-significancelightcurveswiththedataoftheFermi- ] LargeAreaTelescope(LAT).Theadaptive-binningmethodenablesmoreinformationtobeencapsulatedwithinthelightcurvethan E withthefixed-binningmethod.Althoughprimarilydevelopedforblazarstudies,itcanbeappliedtoanysources. H Methods.Thismethodallowsthestartingandendingtimesofeachintervaltobecalculatedinasimpleandquickwayduringafirst . step.Thereportedmeanfluxandspectralindex(assumingthespectrumisapower-lawdistribution)intheintervalarecalculatedvia h thestandardLATanalysisduringasecondstep. p Results.The absence of major caveats associated with this method has been established by means of Monte-Carlo simulations. - Wepresent the performance of thismethod in determining duty cycles aswell as power-density spectra relativeto the traditional o fixed-binningmethod. r t s Keywords.gammarays:analysis a [ 1 1. Introduction v 1 Variabilitystudiesofblazarsprovideawealthofinformationonthedynamicalprocessesatworkintheseobjectsandyieldimportant 5 constraints on their physical parameters. Thanks to its all-sky coverage in 3 hours and large sensitivity, the Fermi-Large Area 8 Telescope(LAT),isenablingalong-termviewofvariabilityintheenergyband0.1–300GeVforalargesampleofγ-rayblazars. 4 Aboutone thousandblazars are included in the Second LAT Active Galaxy Nuclei Catalog (Ackermannetal. 2011). Due to the 1. largevariationsinfluxshownbyblazarsoverdifferenttimescales,producinglightcurvesthatpreservetheinformationprovidedby 0 thedataisnotaneasytask.Witharegular(fixed)timebinning,usinglongbinswillsmoothoutthefastvariationsassessableduring 2 brightflares.Conversely,usingshortbinsmightleadtohard-to-handleupperlimitsduringlow-activityperiods.Herewepresenta 1 simplemethodwherethebinwidthisadjustedbyrequiringaconstantrelativefluxuncertainty,σ =∆ ,(alternativelyaconstant lnF 0 : significance)ineachbin.Thismethodallowsformoreinformationtobeencapsulatedwithinthelightcurvethancanpossiblybe v achievedfor a fixed-binninglightcurve,withoutfavoringanyaprioriarbitrarytimescale andwhile avoidingupperlimits. These i X advantagescomeattheexpenseofaniterativeprocedurerequiredtofindtheproperbinwidthssatisfyingthechosencriterion.The r elaborate,fairlycomputing-intensivemaximum-likelihoodprocedurenecessarytoanalyzeLATdatadoesnotlenditselfverywell a tosuchaniterativeprocedure.Whilelightcurveswithconstantsignal-to-noiseratiosarecommonlyusedatotherwavelengthssuch astheX-rays,theabovedifficultyhassofarhamperedthegenerationofcorrespondinglightcurvesintheLATdomain.Thepurpose ofthemethodpresentedinthispaper(referredtoastheadaptive-binningmethod)istoprovideasolutiontothisproblem. The adaptive-binning method bears some resemblance to the Bayesian-Blocks (BB) method (Scargle 1998). Both methods proposea time binningwhichadaptsitself to thedata insteadof anaprioriarbitraryregularbinning.The maindifferenceis that theBBmethodgivesthemostprobablesegmentationoftheobservationperiodintotimeintervalsduringwhichthephotonarrival rateisperceptiblyconstant,i.e.,hasnostatisticallysignificantvariations.Abinthendefinestheperiodoverwhichaconstantfluxis observed.Intheadaptive-binningmethod,thesegmentationcriterionisbasedonagivenvalueofσ (orsignificance)regardless lnF of whether the flux varies within the bin. The adaptive-binningmethod is expected to be more sensitive (i.e. allows the study of faintersources)thantheBBmethodsinceitmakesuseofboththephotonspatialandenergyinformationandproperlyaccountsfor thediffusebackgroundswhiletheBBmethoddoesnot.Theflareriseanddecaytimescanalsobedeterminedmoreaccuratelywith theadaptive-binningmethod. This paper presents the method and explores its possible inherent biases/caveats. For the sake of clarity, only light curves obtainedwith a constantrelative flux uncertaintywill be discussed, butchangingthe criterionto a constantsignificance, defined 1 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves fromtheTestStatistic1 (TS),isstraightforward.ThemethodisdescribedinSection2.Validationswithsimulationsarepresented in Section3.Section 4presentsresultsontiminganalysesusingthe adaptive-binninglightcurvesregardingthe determinationof thedutycycleandthepowerdensityspectraoftheγ-raysource.AsummaryisgiveninSection5. 2. Descriptionofthemethod 2.1.Optimizationofthetimebins ThegoalofthemethodistocomputelightcurvesforanintegralfluxaboveagivenenergyE ,withconstant∆ inalltimebins. min 0 Thesourceenergyspectrumisassumedtobeapower-lawdistributionwithphotonspectralindexΓ.Althoughthemethodallows anyE tobeused,fluxesarereportedinthefollowingabovetheoptimumenergy(E )forwhichtheaccumulationtimesneeded min 1 tofulfilltheabovecondition(i.e.,binwidths)aretheshortestrelativetootherchoicesofE (seetheAppendixforthederivation min of E ). Theenergy E dependsonthe signal/backgroundratiobutisindependentofexposure.Itis calculatedhereusingtheflux 1 1 andΓdeterminedoverthewholetimerangespannedbythedata. ThemethodconsistsinsolvingthefollowingequationforT (endingtimeoftheinterval)givenastartingtimeT : 1 0 σ (T ,T ,F¯,Γ¯)=∆ (1) lnF 0 1 0 whereF¯ andΓ¯ aretheaveragefluxandphotonspectralindexovertheinterval[T ,T ]respectively.Inordertoavoidthepenaltyof 0 1 excessivecomputingtime requiredbythe standardmaximum-likelihoodanalysis,σ is estimatedfromthetime-orderedlistof lnF photonscontainedintheregionofinterest(ROI),asdescribedintheAppendix(seeEq.A.8). Sincethesourceispotentiallyvariable,F¯ mustbeevaluatedconsistentlyineachtimebin.F¯ isestimatedthroughaprocedure maximizing the likelihood (see Eq. A.4), this procedure being similar to a simplified version of the standard LAT analysis. In principleΓ¯ shouldbeevaluatedsimilarly,butinpracticeΓ¯ canbeleftfixed2tospeedupcomputation.TakingaconstantΓislargely justifiedsincespectralvariationswithtimehavebeenfoundtobeverymoderateinLAT-detectedblazars3(see Abdoetal.2010b). Inpractice,duetothediscretenatureofthedata,Eq.1canonlybesolvedinanapproximateway.Theprocedureisthefollowing: – ForagivenT ,F¯ (initiallyestimatedoverthewholeperiodforthefirstbin)andΓ¯,thefunctionσ (T ,T ,F¯,Γ¯)ismonoton- 0 lnF 0 1 ically decreasing with increasing T (see Eq. A.8). The detection time of theearliestphoton leading to the fulfillment of the 1 conditionσ <∆ ishencetakenasT . lnF 0 1 – F¯ isthenreestimatedover[T ,T ]andσ isreevaluatedusingthisnewF¯ value.Then 0 1 lnF •ifσ isequalto∆ withinapredefinedtolerance,convergenceisachievedandT isreplacedbyT ; lnF 0 0 1 •otherwise,T isreevaluatedwiththeupdatedvalueofF¯.Abisectionmethod,makinguseofthesetofT estimatesobtained 1 1 inpreviousiterations,complementstheproceduretospeedupconvergence. – Thewholeprocedureisrepeateduntilconvergenceisachieved. The timesT forthedifferentintervalsarecalculatedsequentiallyuntiltheconditionσ < ∆ cannotbefulfilledusingthe 1 lnF 0 remainingset of photons(these photonsare left unused).Once the whole set of time intervalshasbeen determined(this stage is referredtoas“Step1” inthe following),F¯, Γ¯ andσ are recalculatedforeachintervalwiththe standardpylikelihoodanalysis lnF (“Step 2”). The consistency between these values of σ and ∆ is then checked. Using Monte-Carlo simulations, an excellent lnF 0 agreementhasbeenobservedinmostcases,makingfurtheriterationsunnecessary. Beingdrivenbythenumberofaccumulatedsourcephotons,thebinwidthsprovidedbythismethoddependonboththesource flux and the exposure of the instrument for the source location. The modulation of the LAT daily exposure over the precession period(53.4days)rangesbetweenafewpercentand±50%(forarockingangleof50◦)dependingonthesourcedeclination. 2.2.Pylikelihoodanalysis ResultsdescribedinthefollowingwereobtainedviaanunbinnedpylikelihoodanalysisperformedwiththeFermi-LATScienceTools softwarepackage4versionv9r19p0.ThetoolsusedinStep1andthepylikelihoodanalysismadeuseofthesamelistofphotonswith energyabove100 MeV and containedwithin a 20◦-in-diameterROI. The P6 V3 DIFFUSE set of instrumentresponsefunctions (IRFs)wasemployed.TheGalacticdiffuseemissionmodelversion”gll iem v02.fit”andtheisotropic(sumofresidualinstrumental andextragalacticdiffuse)background“isotropic iem v02.txt”(filesprovidedwithScienceTools)wereusedthroughouttheproce- dure.Thenormalizationofbothdiffusecomponentswereleftfreeinthefitforthepylikelihoodanalysis.Foruniformityovermany realizationsproducedunderthesameconditions,theoptimumenergywasevaluatedfromthetruefluxandspectralindexusedin Monte-Carlosimulations. 1 TheTestStatisticisdefinedasTS =2(lnL(source)−lnL(nosource)),whereLrepresentsthelikelihoodofthedatagiventhemodelwithor withoutasourcepresentatagivenpositioninthesky.SeeAppendixfordetails. 2 Γcanbetakenfromasourcecatalogwhenavailable(forrealdata)orsettothemeasuredvalueoveralongperiod. 3 PreliminarylightcurvesofbrightLAT-detectedblazarscomputedwithrealdataprovedthattakingaconstantphotonspectralindexinthebin widthestimateprovidesreasonablyaccurateresultsintermsofσ . lnF 4 http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/ 2 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves 3. Validationwithsimulations Inthissection,wefirstpresenttheresultsoftheadaptive-binningmethodappliedtosimulatedvariablesources.Then,weaddress some of the possible caveats of this method by considering simulated constant sources. For this purpose, we compare results obtainedforadaptive-binningandfixed-binninglightcurvesregardingthefollowingissues:biasesandfluctuationsinthemeasured fluxesandphotonindices,correlationbetweenfluxandΓandfinallythefluxcorrelationbetweenconsecutivebins.Fixed-binning analyseswerecarriedoutwiththesametotalnumberofbinsastheadaptive-binninganalysestoenablemeaningfulcomparisons. Thecriterionadoptedforalladaptive-binninganalysesis∆ =25%. 0 3.1.Descriptionofsimulations Dataweresimulatedintheenergyrange0.1–200GeVwiththetoolgtobssim,partoftheFermi-LATScienceToolssoftwarepackage, whichgeneratesphotoneventsfromastrophysicalsourcesandmodelstheirdetectionsaccordingtotheIRFs.TheP6 V3 DIFFUSE setofIRFswasusedconsistentlywiththeanalysisdescribedabove.Thesesimulationsdonotincludeallknownsystematiceffects oftherealdata,inparticularrelatedtothevaryinginstrumentalbackgroundduringtheorbit.However,thislackisnotbelievedto significantlyaffecttheconclusionsdrawnthereafterduetothemoderatemagnitudeoftheseeffects(afew%intheflux, Abdoetal. 2011). The simulations were performed for an 11-month long period starting at the beginning of the scientific operation of the Fermimission,usingtheactualLATpointinghistory.Althoughlightcurvesshowninthefollowingusefluxesabovetheoptimum energy,thedifferentexamplesaredistinguishedaccordingtotheirtruefluxesabove100MeV(F in10−7 phcm−2 s−1)tomake 100 comparisonsclearer.Allsourcesweresimulatedatthesamehigh-Galacticlatitudeskyposition,(l,b)≃(80◦,80◦). 3.2.Lightcurvesofvariablesources Inthissection,themethodis illustratedforthreevariablesourceswhichweresimulatedbymeansoftemplatesshowingrealistic fluxvariationstypicalofblazars.Thesourcespectraweremodeledwithasinglepower-lawfunctionwithanaverageflux F =2 100 (correspondingtoafairlybrightblazardetectedbytheLAT)andafixedphotonindexΓ=2.4.TheoptimumenergyisE =230MeV 1 fortheseparameters. Figure1comparesthetruelightcurveswithlightcurvescalculatedusingtheadaptive-binningmethodforthethreesources.The analysisforthelightcurveshowninFigure1topwasalsoconductedassumingareversedarrowoftime,theresultsbeingpresented in Figure2. Statistically significantfluxescanbe determinedoververydifferenttime scales, rangingfroma few hoursto several monthsintheseexamples.Theoccurrenceofsignificantshort-termflaringactivityduringthelow-fluxstatescanberuledout. Anadversefeatureofthemethodistheflaretruncation(thelightcurveinFigure1cshowssuchafeatureatMET≃255000000). Whenasignificantflareoccursafteralongperiodoflowactivity,anon-negligiblenumberofphotonsfromtheflarehastobe”con- sumed”to counterbalancetheaccumulatedbackgroundphotonsandenablethecriterionto befulfilled.Possible waysto mitigate thiseffectarebeingexploredandwillbeimplementedinfutureversions.Thetoolsallowlightcurvestobegeneratedbyconsidering eitherincreasingordecreasingphotontimes,sotherobustnessofanyanalysisresults(timelags,dutycycles,riseanddecaytimes...) canbetestedbyusingbothflavors. Figure1cmayconveytheimpressionthattheadaptive-binningmethodwillleadtolightcurveslaggingtherealone.However, cross-correlationanalyses have shown thatno significantlag is observedfor the lightcurvesinvestigatedhere, probablybecause truncationaffectsonlyveryfewbinsandtheflareleadingedgesarestillwellsampled. Figure 3 shows the distribution of relative flux uncertainties calculated from the pylikelihoodanalysis for the three variable sources.Allthreedistributionsarecenteredatavalueclosetothetarget∆ =25%(depictedbythedashedline)withessentiallyall 0 valuesincludedintherange20%–30%withatypicalrmsof3%,demonstratingtheperformanceofthemethod. 3.3.Caveatsexploredwithsteadysources Steady sources with three different fluxes (F =0.5, 1 and 5) and two different photon spectral indices (Γ= 2.0 and 2.4) were 100 simulatedoverthesame11-monthlongperiodasforvariablesources.Fiftyrealizationswereperformedforeachcase.Theaverage numbersofbinsinthelightcurvesaswellastheoptimumenergiesarereportedinTable1forthedifferentcases.ForF =1and 100 Γ=2.0,alightcurvewherefluxesareestimatedafterStep1(i.e.,usingthesimplemaximum-likelihoodproceduredescribedinthe Appendix)for a particular realization is compared to that resulting from Step 2 (i.e., where fluxes are computed with the whole pylikelihoodanalyseswith the time intervalsestablishedin Step 1) in Figure4. Thereis a goodagreementbetweenthese fluxes, whichholdsforallrealizationsandparametersets.ExamplesofadaptivebinninglightcurvesforthefluxareshowninFigure5for thedifferentcases,whilelightcurvesforthephotonspectralindexaredisplayedinFigure6.Figure7comparesthefluxdistributions obtainedviatheadaptive-andfixed-binningmethodsbysummingupallrealizations.Foragivensetofconditions,thedistributions havesimilarmeansandrmsbutdifferentskews.Apositiveskew(typicallyequalto1σforthedistributionsshowninFigure7)is a featureof theadaptive-binningmethod.A positivefluctuationinflux leadsto a shorter-than-averagebinassociatedwith a high apparentflux.Anegativefluctuationhaslesschancetoberecordedsincethebinwillbeextendeduntilenoughphotonshavebeen accumulatedtomeetthe∆ -wisecriterion.Thephotonindexdistributionshavebeenfoundtobeverysimilarforthetwomethods 0 andclosetogaussiandistributions. The distributions of relative statistical uncertainties obtained with the adaptive-binning method (resulting from Step 2) are presentedinFigure8.Thesedistributionsaremoregaussian-likethanthoseobtainedforvariablesources,withameanvalueclose to 25% as required and a typical rms of about 1.7%. Simulations performedfor a very low flux of F =0.1 (Γ=2.0), where the 100 3 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves 10−6 a −1 ) s −2 m c h 10−7 p ] (E1 > E x[ u Fl 10−8 ×106 240 245 250 255 260 265 270 MET (s) 10−6 −1 ) b s −2 m c h p ] (E110−7 > E x[ u Fl 10−8 ×106 240 245 250 255 260 265 270 MET (s) 10−6 c −1 ) s −2 m h c10−7 p ] (E1 > E x[ u Fl 10−8 ×106 240 245 250 255 260 265 270 MET (s) Fig.1.Simulatedlightcurves(blue)withtheadaptive-binninglightcurvessuperimposed(Step1:blackopensquares,Step2:red solidcircles)forthreevariablesources.METstandsforMissionElapsedTime. methodyieldsasinglebinoverthe11-monthperiod,showthatthemeanofthedistributionremainswithin10%ofthetargetvalue eveninthatextremecase. 4 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves 10−6 −1 ) s −2 m c h 10−7 p ] (E1 > E x[ u Fl 10−8 ×106 240 245 250 255 260 265 270 MET (s) Fig.2.SameasFig.1abuttheanalysiswasconductedassumingareversedarrowoftime. 20 22 20 18 20 18 16 18 16 14 16 14 Number of bins11028 Number of bins1110248 Number of bins11028 6 6 6 4 4 4 2 2 2 010 15 20 25 30 35 40 010 15 20 25 30 35 40 010 15 20 25 30 35 40 Relative flux uncertainty (%) Relative flux uncertainty (%) Relative flux uncertainty (%) Fig.3.Distributionofrelativefluxuncertaintiesgivenbythepylikelihoodanalysisforthreevariablesources.Thedashedlinedepicts thetarget∆ =25%. 0 Γ=2.0 Γ=2.4 F <N > E (MeV) <N > E (MeV) 100 bins 1 bins 1 0.5 14 396 8 299 1 37 332 23 253 5 268 246 192 205 Table1.Averagenumberoftimebinsandoptimumenergiesforthedifferentsimulationconditions. Thepossiblebiasesinducedbythismethodareexploredinthefollowing. 3.3.1. Biasandstatisticalfluctuationsinfluxandphoton-indexmeasurements Thepylikelihoodanalysisisexpectedtoprovidethecorrectmeanfluxandphotonspectralindexoverallpossibletimeintervals.We neverthelesscheckfortheabsenceofbiasesinthemeasurementoftheseparameterswhenthetimeintervalsaredeterminedwiththe presentmethod.Furthermore,possibleadditionalfluctuationsinthemeasuredparameterscouldarisefromtheintrinsiccorrelation betweenbinwidthandphotoncontentsofthebin.Botheffectsareaddressedhere. Onedefines∆F (∆Γ)asthedifference,expressedinsigma,betweenthemeasuredflux(index)andtheaveragevaluemeasured over the whole 11-month period. Summing over all realizations, the distributions of the means (left) and rms (right) of the ∆F (top)and∆Γ(bottom)distributionsaredisplayedinFigure9foraparticularsetofparameters.Theresultsoftheadaptive-(solid) and fixed- (dashed) binning methods are compared in this figure. The means < ∆F > and < ∆Γ > are listed in Tables 2 and 3 respectively,whilethermsvaluesaregiveninTables4and5. A small bias is observed in the mean flux values. Since similar features are seen for both adaptive- and fixed-binning light curves,onecansafelyconcludethatthisbiasarisesfromsmallsystematicseffectspertainingtoourpylikelihoodanalysisandisnot createdbytheadaptive-binningapproach. 5 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves ×10−9 50 1) − s −2 m 40 c h p 30 1) ( E > E 20 x( u Fl 10 ×106 0 240 245 250 255 260 265 MET Fig.4.Comparisonoffluxfromthetool,i.e.,afterStep1(opendiamonds)andfluxresultingfromthepylikelihoodanalyses,i.e., afterStep2(filledcircles)forasimulatedconstantsourcewithF =1andΓ=2.4. 100 ×10−6 ×10−6 0.5 −1)s 0.4 −1)s 0.5 −2 m −2 m 0.4 h c 0.3 h c 0.3 (pFE>E1 00..21 (pFE>E1 00..21 0 240 245 250 MET2 55 260 265 ×106 0 240 245 250 MET2 55 260 265 ×106 ×10−9 ×10−9 −1)s 50 −1)s 50 −2 m 40 −2 m 40 h c 30 h c 30 p p (FE>E1 1200 (FE>E1 1200 0 240 245 250 MET2 55 260 265 ×106 0 240 245 250 MET2 55 260 265 ×106 ×10−9 ×10−9 20 14 −2−1) sm 111468 −2−1) sm 1102 (ph cFE>E1 114026802 240 245 250 MET2 55 260 265 ×106 (ph cFE>E1 40268 240 245 250 MET 255 260 265×106 Fig.5. Examples of light curves for the different sets of parameters : Γ=2.0 (left) and Γ=2.4 (right), F =5, 1, 0.5 from top to 100 bottom.Thesolidlinedepictsthetruefluxvalue. F Adaptive(Γ=2.0) Fixed(Γ=2.0) Adaptive(Γ=2.4) Fixed(Γ=2.4) 100 5 -0.20±0.01 -0.15±0.01 -0.19±0.01 -0.15±0.01 1 -0.13±0.02 -0.09±0.02 -0.14±0.03 -0.13±0.03 0.5 -0.06±0.03 -0.07±0.03 -0.12±0.05 -0.13±0.05 Table2.Comparisonof<∆F >foradaptiveandfixedbinnings. Theaveragermsvaluesarefoundtobeclosetotheexpectedvalueof1forallcases(withslightlylowervaluesfortheadaptive- binningapproachrelativetothefixed-binningone).Onecanthusexcludethattheadaptive-binningapproachgivesrisetosignificant fluctuationsinthemeasuredparameters. 3.3.2. Flux-indexcorrelation Anotherissueworthinvestigatingisthecorrelationbetweenmeasuredphotonindexandfluxinagiventimeinterval.Allphotonsdo notcontributeequallytothefulfillmentofthecriterion,withhigher-energyphotonscontributingmore.Thedetectionofaseriesof photonswithhigher-than-averageenergieswillthusleadtothecriterionbeingsatisfiedfasterandconsequentlytotheintervalunder considerationbeingclosedearlier.Inordertoevaluatewhethertheadaptive-binningmethodcreatesadditionalcorrelationbetween thephotonspectralindexandflux (asmeasuredin Step 2),thecorrespondingcorrelationfactoris computedforeachrealization. 6 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves 3 3.5 2.8 2.6 3 2.4 Γ 2.2 Γ 2.5 2 1.8 1.6 2 1.4 1.2 ×106 1.5 ×106 240 245 250 MET2 55 260 265 240 245 250 MET2 55 260 265 3 3.6 2.8 3.4 2.6 3.2 2.4 3 Γ 2.22 Γ 22..68 1.8 2.4 1.6 2.2 1.4 2 1.2 ×106 1.8 ×106 240 245 250 MET2 55 260 265 240 245 250 MET2 55 260 265 2.8 3.2 2.6 3 2.4 2.8 2.2 Γ 2 Γ 2.6 1.8 2.4 1.6 2.2 1.4 ×106 2 ×106 240 245 250 MET2 55 260 265 240 245 250 MET 255 260 265 Fig.6.Temporalevolutionofthemeasuredphotonspectralindex:Γ=2.0(left)andΓ=2.4(right),F =5,1,0.5fromtoptobottom. 100 Thesolidlinedepictsthetruephotonindex. 800 500 700 600 400 mber of bins450000 mber of bins300 Nu300 Nu200 200 100 100 00 0.5 1 1.5 2 2.5 3 00 0.5 1 1.5 2 2.5 3 Normalized Flux Normalized Flux 100 60 80 50 Number of bins4600 Number of bins3400 20 20 10 00 0.5 1 1.5 2 2.5 3 00 0.5 1 1.5 2 2.5 3 Normalized Flux Normalized Flux 50 25 40 20 Number of bins2300 Number of bins1105 10 5 00 0.5 1 1.5 2 2.5 3 00 0.5 1 1.5 2 2.5 3 Normalized Flux Normalized Flux Fig.7.Normalizedfluxdistributionsforadaptive(solid)andfixed(dashed)binningsandsteadysourceswithΓ=2.0(left)andΓ=2.4 (right),F =5,1,0.5fromtoptobottom 100 Since E is chosen as the optimum energy, for which the correlation between photon index and integral flux is minimum by min definition, the observed correlation factor is expected to be small. The correlation-factor distributions obtained for adaptive and fixedbinningsareshowninFigure10.Forallcases,thedistributionsareverysimilarforthetwoapproachesandareallcentered atsmallvalues,withlargerfluctuationsforlowerfluxes.Therefore,themeasuredphotonspectralindicesandfluxesdonotappear morecorrelatedwhenusinganadaptivebinningrelativetoafixedbinning. 7 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves 5000 3000 4000 2500 23 Number of bins000000 12 Number of bins500000 1000 1000 500 010 15 20 25 30 35 40 010 15 20 25 30 35 40 Relative flux uncertainty (%) Relative flux uncertainty (%) 600 350 500 300 Number of bins340000 Number of bins122505000 200 100 100 50 010 15 20 25 30 35 40 010 15 20 25 30 35 40 Relative flux uncertainty (%) Relative flux uncertainty (%) 250 120 200 100 Number of bins110500 Number of bins6800 40 50 20 010 15 20 25 30 35 40 010 15 20 25 30 35 40 Relative flux uncertainty (%) Relative flux uncertainty (%) Fig.8.Distributionofσ for∆ =25%(depictedbyadashedline)forthedifferentparametersets:Γ=2.0(left)andΓ=2.4(right), lnF 0 F =5,1,0.5fromtoptobottom. 100 F Adaptive(Γ=2.0) Fixed(Γ=2.0) Adaptive(Γ=2.4) Fixed(Γ=2.4) 100 5 0.02±0.01 0.02±0.01 0.02±0.01 0.01±0.01 1 0.02±0.03 0.05±0.03 0.04±0.03 -0.01±0.03 0.5 0.06±0.03 0.05±0.03 0.03±0.06 0.03±0.05 Table3.Comparisonof<∆Γ>foradaptiveandfixedbinnings. F Adaptive(Γ=2.0) Fixed(Γ=2.0) Adaptive(Γ=2.4) Fixed(Γ=2.4) 100 5 0.99±0.01 1.06±0.01 0.97±0.01 1.03±0.01 1 0.96±0.02 1.01±0.01 0.93±0.02 0.98±0.02 0.5 0.90±0.03 1.02±0.03 0.81±0.03 0.87±0.03 Table4.Comparisonoftheaveragermsofthe∆F distributionsforadaptiveandfixedbinnings. F Adaptive(Γ=2.0) Fixed(Γ=2.0) Adaptive(Γ=2.4) Fixed(Γ=2.4) 100 5 1.02±0.01 1.03±0.01 1.05±0.01 1.03±0.01 1 1.00±0.02 1.04±0.02 1.05±0.02 1.05±0.02 0.5 1.00±0.03 1.03±0.02 1.05±0.04 1.01±0.05 Table5.Comparisonoftheaveragermsofthe∆Γdistributionsforadaptiveandfixedbinnings. 3.3.3. Interbincorrelation In the adaptive-binning method, the starting time of a given bin depends on the starting time and flux-dependent width of the previousbinandthusbyrecurrenceonthewholefluxhistorysincethestartofthelightcurve.Inthissection,weexploretheimpact oftheinterbincorrelationonthemeasuredsourceparametersbycomparingtheseintwoconsecutivebins.Acomparisonwillagain be made with the results of a similar analysisperformedwith a fixed binning,for whichfluxesmeasuredin consecutivebinsare independentbynature.Theflux(index)inonebinisplottedversustheflux(index)inthenextbininFigure11left(right)forthe wholelightcurveofaparticularrealization. 8 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves 22 20 12 18 10 16 s s e e c c r r14 u u o 8 o s s12 of of er 6 er 10 b b m m 8 u u N N 4 6 4 2 2 0 0 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 <(F−F )/ σ > RMS (F−F )/ σ 11 months F 11 months F 18 14 16 12 14 s s e e c c r10 r12 u u o o s s of 8 of 10 r r be be 8 m 6 m u u N N 6 4 4 2 2 0 0 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 <(Γ−Γ )/ σ > RMS (Γ−Γ )/ σ 11 months Γ 11 months Γ Fig.9.Distributionsofmeanvalues(left)andrms(right)forflux(top)andphotonindex(bottom)obtainedinadaptive-(solid)and fixed-binning(dashed)lightcurves.Inthisexample,Γ=2.4andF =5. 100 ThedistributionofcorrelationfactorsobtainedwiththedifferentrealizationsarepresentedinFigure12.Nosignificantdiffer- ences are observed between distributions obtainedwith adaptive and fixed binningsfor all cases. Both distributionsare centered close to 0 (as expected for the fixed-binning case), demonstrating that the interbin dependence intrinsic to the adaptive binning methodhaslittleimpactonthecorrelationbetweenparametersmeasuredinconsecutivebins. 4. High-levelanalysiswithvariablesources 4.1.Dutycycle Onewaytodescribevariationsinalightcurveisviaadutycycle,correspondingtothefractionoftimeasourceisina“bright”state. Moregenerallythiscanbepresentedasafluxdistributionoritsintegral,thecumulativedistributionfunction(CDF).InFigure13we haveplottedflux,normalizedtoameanof1,versus1-CDF,forthelightcurvesdisplayedinFigure1.Thecurvesgivethefraction oftime(1-CDF)thatasourceisaboveaparticularfluxlevel.Fourcurvesareshownforeachlightcurve,the‘true’lightcurve,the adaptive-binninglightcurve,thefixed-binninglightcurve(withthesamenumbersofbinsastheadaptive-binninglightcurve)and thefixed-binninglightcurvewithhigher(16times)timeresolution.Thetwofixed-binninglightcurvesarecomplementaryinthat thehighresolutiononeworkswellatthehigh-fluxendbutfailsatthefaint-endwherethe noisegovernsthe distributionbecause of the low signal-to-noise ratio of the individual points. With adaptive binning the bin widths can be optimized such that in the presenceofnoise,thefluxdistribution,ordutycycle,canbedescribedoveramuchwiderrangethanispossiblewhenafixedbin widthisused.Thelargertherangeinfluxesthemoreadvantageoustheadaptivebinningisforthistypeofanalysis. 9 B.Lottetal.:Adaptive-binningmethodforFermi-LATlightcurves 30 30 es25 es25 c c sour20 sour20 er of 15 er of 15 b b um10 um10 N N 5 5 0−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 0−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 14 12 s s ce12 ce10 our10 our s s 8 of 8 of er er 6 b 6 b m m u u 4 N 4 N 2 2 104−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 09−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 s12 s 8 e e c c 7 ur10 ur o o 6 s s of 8 of 5 er 6 er 4 b b m m 3 u 4 u N N 2 2 1 0−1 −0.8 −0.6 −0.4 −0.2 C0 0.2 0.4 0.6 0.8 1 0−1 −0.8 −0.6 −0.4 −0.2 C0 0.2 0.4 0.6 0.8 1 Γ/F Γ/F Fig.10.Distributionsofcorrelationfactorbetweenspectralindexandfluxforadaptive(solid)andfixed(dashed)binnings.Γ=2.0 (left),Γ=2.4(right),F =5,1,0.5fromtoptobottom. 100 2 2 1.8 1.8 1.6 1.6 1.4 1.4 F>1.2 Γ>1.2 < < /11 /11 + + Fi0.8 Γi0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 F/<F> Γ/<Γ> i i Fig.11. Fluxes (left) and photon spectral indices (right) measured in consecutive bins plotted one against another for a given realization. 4.2.PowerDensitySpectrum(PDS) ThePDSisoneofthemaintoolsusedtocharacterizelightcurvevariability.ForevenlysampleddatathePDSiscomputeddirectly via the Fouriertransformof the lightcurve.For lightcurveswith unevensamplingthe Lomb-Scarglealgorithmcan be used and the PDS distortions caused by the sampling are usually modeled by comparison with simulated light curves (Doneetal. 1992; Uttleyetal. 2002). This method cannot easily be applied to adaptively binned light curves since the bin widths depend on flux, makingtime samplingdifferentforeach simulation.Itis still possibleto make a qualitativeestimate ofthe PDS foran adaptive- binninglightcurve.Todothisweoversamplethelightcurvewithalinearinterpolationbetweenthecenterofeachoftheadaptive timebins.ThePDSisthencomputedwithastandardFouriertransform.Thebinningandinterpolationmodifythepowerdensity aroundandabovethefrequenciescorrespondingtothewidthsofthetimebins.Tocheckatwhatfrequenciesthisbecomesimportant foraparticularlightcurvewecomputethedistributionofNyquistfrequencies(equalto0.5/dtwheredtisthebinwidth)associated 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.